Момент инерции математической точки, тело относительно неподвижной оси(от чего зависить). Момент инерции тела относительно неподвижной оси. Теорема Штейнера Момент инерции тела относительно точки

Моменты инерции тела относительно параллельных осей. Теорема Гюйгенса.

Моменты инерции данного тела относи­тельно разных осей будут, вообще говоря, разными. Покажем, как зная момент инерции относительно какой-нибудь одной оси, проведен­ной в теле, найти момент инерции от­носительно любой другой оси, ей па­раллельной.

Рис.35

Проведем через центр масс С тела произвольные оси Cx"y"z", а через лю­бую точку О на оси Сх" - оси Oxyz, такие, что Оy ½½Сy", Oz ½½Cz" (рис. 35). Расстояние между осями Cz" и Оz обозначим черезd. Тогда

но, как видно из рисунка, для любой точки тела или, а. Подставляя эти значения , в выражение для и вынося общие множители d 2 и 2d за скобки, получим

В правой части равенства первая сумма равна I cz " , а вторая - массе тела М. Найдем значение третьей суммы. На основании фор­мул для координат центра масс.Так как в на­шем случае точка С является началом координат, то x C = 0 и, сле­довательно, . Окончательно получаем:

Формула выражает следующую теорему Гюйгенса :

Момент инерции тела относительно данной оси равен моменту инерции относительно оси, ей параллельной, проходящей через центр масс тела, сложенному с произведением массы всего тела на квадрат расстояния между осями.

Найдем момент инерции тела относительно оси u , проходящей через некоторую точку О (рис. 36).

Рис.36

По определению момент инерции.

Поместим в точку О начало координатных осей x, y, z . Из прямоугольного треугольника ОАМ i следует, где. И так как радиус-вектор точки, то, проектируя это равенство на ось u , получим (, - углы между осью u и осями x, y, z ).

Рис. 14.3.

Как известно из тригономет­рии

И, группируя подобные члены, содержащие косинусы одинаковых углов, получим:

Но - расстояния от точки М i до осей x, y, z, соответственно. Поэтому

где I x , I y , I z – моменты инерции тела относительно осей координат; I xy , J yz , J xz - центробежные моменты инерции относительно осей отмеченных в индексах.

Если два центробежных момента инерции, оба содержащих в индексах названия какой-нибудь одной оси, равны нулю, то эта ось называется главной осью инерции . Например, если J yz = 0 и J xz = 0, то ось z главная ось инерции.

Так как все моменты инерции зависят от того, где находится точка О , от выбора начала координат, то обязательно надо указать для какой точки определены эти моменты инерции. Если начало координат взято в центре масс С , то все главные оси инерции называются главными центральными осями инерции.



Если в данной точке координатные оси являются главными осями инерции (центробежные моменты инерции относительно их равны нулю), то формула (2) упрощается:

Иногда по некоторым признакам нетрудно найти главные оси инерции тела.

1. Если у однородного тела имеется ось симметрии, то эта ось является главной центральной осью инерции.

Действительно. Направим координатную ось z по оси симметрии. Тогда для каждой точки тела с координатами (x i , y i , z i ) можно отыскать точку с координатами (-x i , -y i , -z i ) и поэтому центробежные моменты инерции и. Значит ось z – главная ось инерции, и центральная ось, т.к. центр масс, как известно, находится на оси симметрии. Причём, эта ось будет главной для любой точки расположенной на оси симметрии.

2. Если у однородного тела имеется плоскость симметрии, то любая ось перпендикулярная ей будет главной осью инерции для всех точек этой плоскости.

Направим ось z перпендикулярно плоскости симметрии из любой её точки О , назначив там начало координат. Тогда для каждой точки тела с координатами (x i , y i , z i ) можно найти симметричную ей точку с координатами (x i , y i , - z i ). Поэтому центробежные моменты инерции I xz и I yz будут равны нулю. Значит ось z – главная ось инерции.

Пример 9. Определим момент инерции диска относительно оси u , расположенной под углом к оси симметрии диска z (рис.37).

Рис.37

Оси x, y и z – главные центральные оси инерции, т.к. они являются осями симметрии.

Тогда, где - угол между осями u и z ; угол - угол между осями u и y , равный; угол - угол между осями u и x , равный 90°. Поэтому

Дифференциальные уравнения движения системы.

Рас­смотрим систему, состоящую из п материальных точек. Выделим какую-нибудь точку системы с массой. Обозначим равнодейству­ющую всех приложенных к точке внешних сил (и активных и реак­ций связей) через , а равнодействующую всех внутренних сил - через . Если точка имеет при этом ускорение , то по основному закону динамики

Аналогичный результат получим для любой точки. Следовательно, для всей системы будет:

Эти уравнения, из которых можно определить закон движения каждой точки системы, называются дифференциальными уравнениями движения системы в векторной форме. Уравнения являются дифференциальными, так как; входящие в правые части уравнений силы будут в общем случае зависеть от времени, координат точек системы и их скоростей.

Проектируя на какие-нибудь координатные оси, мы можем получить дифференциальные уравнения движения системы в проекциях на эти оси.

Полное решение основной задачи динамики для системы состояло бы в том, чтобы, зная заданные силы, проинтегрировать соответ­ствующие дифференциальные уравнения и определить таким путем закон движения каждой из точек системы в отдельности.

Однако такой путь решения обычно не применяется по двум причинам. Во-первых, этот путь слишком сложен и почти всегда связан с непреодолимыми математическими трудностями. Во-вторых, в большинстве случаев при решении задач механики бывает доста­точно знать некоторые суммарные характеристики движения системы в целом, а не движение каждой из ее точек в отдельности. Эти суммарные характеристики определяются с помощью общих теорем динамики системы, к изучению которых мы и перейдем.

Основная роль уравнений состоит в том, что они, или след­ствия из них, являются исходными для получения соответствующих общих теорем.

Общие теоремы динамики механической системы: теоремы о движении центра масс механической системы и об изменении количества движения, теоремы об изменении кинетического момента и кинетической энергии, -являются следствием основного уравнения динамики. Данные теоремы рассматривают не движение отдельных точек и тел, входящих в механическую систему, а некоторые интегральные характеристики, такие как движение центра масс механической системы, ее количество движения, кинетический момент и кинетическую энергию. В результате из рассмотрения исключаются неизвестные внутренние силы, а в ряде случаев и реакции связей, что существенно упрощает решения задачи.

При изучении вращения твердых тел будем пользоваться понятием момента инерции.

Разобьем тело на такие малые части, что каждую из них можно считать материальной точкой. Пусть m i – масса i- й материальной точки, r i – ее расстояние до некоторой оси O .

Величина, равная произведению массы материальной точки на квадрат кратчайшего расстояния ее до данной оси, называется моментом инерции материальной точки относительно оси:

Сумма моментов инерции всех материальных точек тела называется моментом инерции тела относительно некоторой оси:

Момент инерции твердого тела зависит, как нетрудно видеть, от распределения масс относительно интересующей нас оси.

Если тело представляет собой обруч массы m , толщина которого мала по сравнению с радиусом R , то момент его инерции относительно оси, проходящей через центр и перпендикулярной к плоскости обруча, равен

Для тел более сложной формы суммирование выражения (5.2) производится методами интегрального исчисления согласно формуле

где интегрирование производится по всему объему тела. Величина r
в этом случае есть функция положения точки с координатами x , y , z .

В качестве примера найдем момент инерции однородного диска относительно оси, перпендикулярной к плоскости диска и проходящей через его центр. Разобьем диск на кольцевые слои толщиной dr .

Все точки одного слоя будут находиться на одинаковом расстоянии от оси, равном r . Объем такого слоя равен:

,

где b – толщина диска. Поскольку диск однороден, плотность его во всех точках одинакова и

где dm – масса кольцевого слоя.

Теперь по формуле (5.4) находим момент инерции

,

где R – радиус диска;

.

Наконец, введя массу диска m равную произведению плотности на объем диска , получим

Моменты инерции некоторых однородных твердых тел относительно оси, проходящей через центр масс тела , приведены в табл. 5.1.

Таблица 5.1

Если известен момент инерции тела относительно оси, проходящей через его центр масс, то можно найти момент инерции относительно любой другой параллельной оси. Для этого надо воспользоваться теоремой Гюйгенса – Штейнера :

момент инерции тела I относительно произвольной оси равен моменту его инерции I c относительно параллельной ей оси, проходящей через центр масс C тела, сложенному с произведением массы тела m на квадрат расстояния a между осями:

Найдем связь между моментами инерции тела относительно двух параллельных осей, одна из которых проходит через центр масс. Найдем момент инерции тела относительно оси z параллельной оси z C . Ось z C проходит через центр масс тела. Разделим мысленно тело на частицы массой m i , где i – порядковый номер. Определим положение каждой частицы относительно осей z и z C . В соответствии с определением момента инерции , где – это кратчайшее расстояние до оси вращения (радиус окружности, которую описывает точка при своем движении вокруг оси вращения).

На рис. 5.3 видно, что , тогда момент инерции точки массой m i относительно оси z равен: , а для всего тела момент инерции относительно оси z равен сумме моментов инерции всех частиц тела относительно этой же оси:

(5.7)

По определению – момент инерции тела относительно оси z C , проходящей через центр масс тела; , тогда . Выражение можно преобразовать . Величина, равная определяет положение центра масс тела относительно оси z C . Из рисунка видно, что , т.к. центр масс лежит на оси z C .

Тогда получим

(5.8)

– момент инерции I z тела относительно произвольной оси равен сумме момента инерции тела относительно параллельной ей оси z C , проходящей через центр масс, и величины ma 2 , где m – масса тела, a – расстояние между осями.

Пример. Момент инерции тонкого стержня (массы m и длины ) относительно оси, перпендикулярной стрежню и проходящей через его конец, равен.

Моментом инерции системы (тела) отно­сительно оси вращения называется физи­ческая величина, равная сумме произведе­ний масс n материальных точек системы на квадраты их расстояний до рассматри­ваемой оси:

В случае непрерывного распределения масс эта сумма сводится к интегралу

Момент инерции материальной точки:

относительно данной оси – скалярная величина, равная произведению массы точки на квадрат расст. от этой точки до оси (J=mr 2 , m – масса точки; r – расстояние от точки до оси)

Теорема Штейнера

Теорема Штейнера - формулировка

Согласно теореме Штейнера, установлено, что момент инерции тела при расчете относительно произвольно оси соответствует сумме момента инерции тела относительно такой оси, которая проходит через центр масс и является параллельной данной оси, а также плюс произведение квадрата расстояния между осями и массы тела, по следующей формуле (1):

Где в формуле принимаем соответственно величины: d – расстояние между осями ОО1║О’O1’;
J0 – момент инерции тела, рассчитанный относительно оси, что проходит сквозь центр масс и будет определяться соотношением (2):

J0 = Jd = mR2/2 (2)

Например, для обруча на рисунке момент инерции относительно оси O’O’, равен

Момент инерции прямого стержня длиной , ось перпендикулярна стержню и проходит через его конец.

10) момент импульса закон сохранения момента импульса

Моментом импульса (количества движения) материальной точки А относительно неподвижной точки О называется физическая величина, определяемая векторным произведением:

где r - радиус-вектор, проведенный из точки О в точку A, p =mv - импульс материальной точки (рис. 1); L - псевдовектор,

Рис.1

Моментом импульса относительно неподвижной оси z называется скалярная величина L z , равная проекции на эту ось вектора момента импульса, определенного относительно произвольной точки О данной оси. Момент импульса L z не зависит от положения точки О на оси z.

При вращении абсолютно твердого тела вокруг неподвижной оси z каждая точка тела движется по окружности постоянного радиуса r i со скоростью v i . Скорость v i и импульс m i v i перпендикулярны этому радиусу, т. е. радиус является плечом вектора m i v i . Значит, мы можем записать, что момент импульса отдельной частицы равен

и направлен по оси в сторону, определяемую правилом правого винта.

Зако́н сохране́ния моме́нта и́мпульса Математически выражается через векторную сумму всех моментов импульса относительно выбранной оси для замкнутой системы тел, которая остается постоянной, пока на систему не воздействуют внешние силы. В соответствии с этим момент импульса замкнутой системы в любой системе координат не изменяется со временем.

Закон сохранения момента импульса есть проявление изотропности пространства относительно поворота.

В упрощённом виде: , если система находится в равновесии.

Основной закон сохранения, динамика твердого тела

Динамика твердого тела

Вращение вокруг неподвижной оси. Момент импульса твердого тела относительно неподвижной оси вращения равен

Направление проекции совпадает с направлением т.е. определяется по правилу буравчика. Величина

называется моментом инерции твердого тела относительно Продифференцировав , получим

Это уравнение называют основным уравнением динамики вращательного движения твердого тела вокруг неподвижной оси. Вычислим еще кинетическую энергию вращающегося твердого тела:

и работу внешней силы при повороте тела:

Плоское движение твердого тела. Плоское движение есть суперпозиция поступательного движенияцентра масс и вращательного движения в системе центра масс (см. разд. 1.2). Движение центра масс описываетсявторым законом Ньютона и определяется результирующей внешней силой (уравнение (11)).Вращательное движение в системе центра масс подчиняется уравнению (39), в котором надо учитывать только реальные внешние силы, так как момент сил инерции относительно центра масс равен нулю (аналогично моменту сил тяжести, пример 1 из разд. 1.6). Кинетическая энергия плоского движения равна уравнение Момент импульса относительно неподвижной оси, перпендикулярной плоскости движения, вычисляется по формуле (см. уравнение где - плечо скорости центра масс относительно оси, а знаки определяются выбором положительного направления вращения.

Движение с неподвижной точкой. Угловая скорость вращения, направленная вдоль оси вращения, меняет свое направление как в пространстве, так и по отношению к самому твердому телу. Уравнение движения

которое называют основным уравнением движения твердого тела с неподвижной точкой, позволяетузнать, как изменяется момент импульса Так как вектор в общем случае не параллелен вектору то для

замыкания уравнений движения надо научиться связывать эти величины друг с другом.

Гироскопы. Гироскопом называют твердое тело, быстро вращающееся относительно своей оси симметрии. Задачу о движении оси гироскопа можно решать в гироскопическом приближении: оба вектора направлены вдоль оси симметрии. Уравновешенный гироскоп (закрепленный в центре масс) обладает свойством безынерционно его ось перестает двигаться, как только исчезает внешнее воздействие ( обращается в нуль). Это позволяет использовать гироскоп для сохранения ориентации в пространстве.

На тяжелый гироскоп (рис. 12), у которого центр масс смещен на расстояние от точки закрепления действует момент силы тяжедти, направленный перпендикулярно Так как то и ось гироскопа совершают регулярное вращение вокруг вертикальной оси (прецессия гироскопа).

Конец вектора вращается по горизонтальной окружности радиусом а с угловой скоростью

Угловая скорость прецессии не зависит от угла наклона оси а.

Зако́ны сохране́ния - фундаментальные физические законы, согласно которым при определённых условиях некоторые измеримые физические величины, характеризующие замкнутую физическую систему, не изменяются с течением времени.

· Закон сохранения энергии

· Закон сохранения импульса

· Закон сохранения момента импульса

· Закон сохранения массы

· Закон сохранения электрического заряда

· Закон сохранения лептонного числа

· Закон сохранения барионного числа

· Закон сохранения чётности

Момент силы

Моментом силы относительно оси вращения называется физическая величина, равная про­изведению силы на ее плечо.

Момент силы определяют по формуле:

М - FI , где F - сила, I - плечо силы.

Плечом силы называется кратчайшее расстояние от линии действия силы до оси вращения тела.

Момент силы характеризует вращающее действие силы. Это действие зависит как от силы, так и от плеча. Чем больше плечо, тем меньшую силу надо приложить,

За единицу момента силы в СИ принимается момент силы в 1 Н, плечо которой равно 1м - ньютон-метр (Н м).

Правило моментов

Твердое тело, способное вращаться вокруг неподвижной оси, находится в равновесии, если момент силы М, вращающей его по часовой стрелке, равен моменту силы М2, вращающей его против часовой стрелки:

М1 = -М2 или F 1 ll = - F 2 l 2 .

Момент пары сил одинаков относительно любой оси, перпендикулярной к плоскости пары. Суммарный момент М пары всегда равен произведению одной из сил F на расстояние I между силами, которое называется плечом пары, независимо от того, на какие отрезки и /2 разделяет положение оси плечо пары:

M = Fll + Fl2=F(l1 + l2) = Fl.

Если тело вращается вокруг неподвижной оси z с угловой скоростью , то линейная скорость i -й точки , R i – расстояние до оси вращения. Следовательно,

Здесь I c – момент инерции относительно мгновенной оси вращения, проходящей через центр инерции.

Работа момента сил.

Работа силы.
Работа постоянной силы, действующей на прямолинейно движущееся тело
, где - перемещение тела, - сила, действующая на тело.

В общем случае, работа переменной силы, действующей на тело, движущееся по криволинейной траектории . Работа измеряется в Джоулях [Дж].

Работа момента сил, действующего на тело, вращающееся вокруг неподвижной оси , где - момент силы, - угол поворота.
В общем случае .
Совершенная нат телом работа переходит в его кинетическую энергию.

Механические колебания.

Колеба́ния - повторяющийся в той или иной степени во временипроцесс изменения состояний системы.

Колебания почти всегда связаны с попеременным превращением энергии одной формы проявления вдругую форму.

Отличие колебания от волны.

Колебания различной физической природы имеют много общих закономерностей и тесно взаимосвязаны cволнами. Поэтому исследованиями этих закономерностей занимается обобщённая теория колебаний иволн. Принципиальное отличие от волн: при колебаниях не происходит переноса энергии, это, так сказать, «местные» преобразования энергии.

Характеристики колебаний

Амплитуда (м) - максимальное отклонение колеблющейся величины от некоторого усреднённого еёзначения для системы.

Промежуток времени (сек) , через который повторяются какие-либо показатели состояния системы(система совершает одно полное колебание), называют периодом колебаний.

Число колебаний в единицу времени называется частотой колебаний (Гц, сек -1) .

Период колебаний и частота – обратные величины;

В круговых или циклических процессах вместо характеристики «частота» используется понятие круговая илициклическая частота (Гц, сек -1 , об/сек) , показывающая число колебаний за время 2π:

Фаза колебаний -- определяет смещение в любой момент времени, т.е. определяет состояниеколебательной системы.

Маятник мат физ пруж

. Пружинный маятник - это груз массой m, который подвешен на абсолютно упругой пружине и совершает гармонические колебания под действием упругой силы F = –kx, где k - жесткость пружины. Уравнение движения маятника имеет вид

Из формулы (1) вытекает, что пружинный маятник совершает гармонические колебания по закону х = Асоs(ω 0 t+φ) с циклической частотой

и периодом

Формула (3) верна для упругих колебаний в границах, в которых выполняется закон Гука, т. е. если масса пружины мала по сравнению с массой тела. Потенциальная энергия пружинного маятника, используя (2) и формулу потенциальной энергии предыдущего раздела, равна

2. Физический маятник - это твердое тело, которое совершает колебания под действием силы тяжести вокруг неподвижной горизонтальной оси, которая проходит через точку О, не совпадающую с центром масс С тела (рис. 1).

Рис.1

Если маятник из положения равновесия отклонили на некоторый угол α, то, используя уравнение динамики вращательного движения твердого тела, момент M возвращающей силы

где J - момент инерции маятника относительно оси, которая проходит через точку подвеса О, l – расстояние между осью и центром масс маятника, F τ ≈ –mgsinα ≈ –mgα - возвращающая сила (знак минус указывает на то, что направления F τ и α всегда противоположны; sinα ≈ α поскольку колебания маятника считаются малыми, т.е. маятника из положения равновесия отклоняется на малые углы). Уравнение (4) запишем как

Принимая

получим уравнение

идентичное с (1), решение которого (1) найдем и запишем как:

Из формулы (6) вытекает, что при малых колебаниях физический маятник совершает гармонические колебания с циклической частотой ω 0 и периодом

где введена величина L=J/(ml ) - .

Точка О" на продолжении прямой ОС, которая отстоит от точки О подвеса маятника на расстоянии приведенной длины L, называетсяцентром качаний физического маятника (рис. 1). Применяя теорему Штейнера для момента инерции оси, найдем

т. е. ОО" всегда больше ОС. Точка подвеса О маятника и центр качаний О" имеют свойство взаимозаменяемости : если точку подвеса перенести в центр качаний, то прежняя точка О подвеса будет новым центром качаний, и при этом не изменится период колебаний физического маятника.

3. Математический маятник - это идеализированная система, состоящая из материальной точки массой m, которая подвешена на нерастяжимой невесомой нити, и которая колеблется под действием силы тяжести. Хорошее приближение математического маятника есть небольшой тяжелый шарик, который подвешен на длинной тонкой нити. Момент инерции математического маятника

где l - длина маятника.

Поскольку математический маятник есть частный случай физического маятника, если предположить, что вся его масса сосредоточена в одной точке - центре масс, то, подставив (8) в (7), найдем выражение для периода малых колебаний математического маятника

Сопоставляя формулы (7) и (9), видим, что если приведенная длина L физического маятника равна длине l математического маятника, то периоды колебаний этих маятников одинаковы. Значит, приведенная длина физического маятника - это длина такого математического маятника, у которого период колебаний совпадает с периодом колебаний данного физического маятника.

Гар. колебания и харак.

Колебаниями называются движения или процессы, характеризующиеся определенной повторяемостью во времени. Колебательные процессы имеют широкое распространение в природе и технике, например качание маятника часов, переменный электрический ток и т. Д

Простейшим типом колебаний являются гармонические колебания - колебания, при которых колеблющаяся величина изменяется со временем по закону синуса (косинуса). Гармонические колебания некоторой величины s описываются уравнением вида

где ω 0 - круговая (циклическая) частота , А - максимальное значение колеблющейся величины, называемое амплитудой колебания , φ - начальная фаза колебания в момент времени t=0, (ω 0 t+φ) - фаза колебания в момент времени t. Фаза колебания есть значение колеблющейся величины в данный момент времени. Так как косинус имеет значение в пределах от +1 до –1, то s может принимать значения от +А до –А.

Определенные состояния системы, которая совершает гармонические колебания, повторяются через промежуток времени Т, имеющий название период колебания , за который фаза колебания получает приращение (изменение) 2π, т. е.

Величина, обратная периоду колебаний,

т. е. число полных колебаний, которые совершаются в единицу времени, называется частотой колебаний . Сопоставляя (2) и (3), найдем

Единица частоты - герц (Гц): 1 Гц - частота периодического процесса, во время которого за 1 с совершается один цикл процесса.

Амплитуда колебаний

Амплитудой гармонического колебания называется наибольшее значение смещения тела от положения равновесия. Амплитуда может принимать различные значения. Она будет зависеть от того, насколько мы сместим тело в начальный момент времени от положения равновесия.

Амплитуда определяется начальными условиями, то есть энергией сообщаемой телу в начальный момент времени. Так как синус и косинус могут принимать значения в диапазоне от -1 до 1, то в уравнении должен присутствовать множитель Xm, выражающий амплитуду колебаний. Уравнение движения при гармонических колебаниях:

x = Xm*cos(ω0*t).

Затух. колеб и их хар

Затухающие колебания

Затуханием колебаний называется постепенное уменьшение амплитуды колебаний с течением времени, обусловленное потерей энергии колебательной системой.

Собственные колебания без затухания – это идеализация. Причины затухания могут быть разные. В механической системе к затуханию колебаний приводит наличие трения. В электромагнитном контуре к уменьшению энергии колебаний приводят тепловые потери в проводниках, образующих систему. Когда израсходуется вся энергия, запасенная в колебательной системе, колебания прекратятся. Поэтому амплитуда затухающих колебаний уменьшается, пока не станет равной нулю.

где β – коэффициент затухания

В новых обозначениях дифференциальное уравнение затухающих колебаний имеет вид:

. где β – коэффициент затухания , где ω 0 – частота незатухающих свободных колебаний в отсутствии потерь энергии в колебательной системе.

Это линейное дифференциальное уравнение второго порядка.

Частота затухающих колебаний :

В любой колебательной системе затухание приводит к уменьшению частоты и соответственно увеличению периода колебаний.

(физический смысл имеет только вещественный корень, поэтому ).

Период затухающих колебаний:

.

Смысл, который вкладывался в понятие периода для незатухающих колебаний, не подходит для затухающих колебаний, так как колебательная система никогда не возвращается в исходное состояние из-за потерь колебательной энергии. При наличии трения колебания идут медленнее: .

Периодом затухающих колебаний называется минимальный промежуток времени, за который система проходит дважды положение равновесия в одном направлении.

Амплитуда затухающих колебаний :

Для пружинного маятника .

Амплитуда затухающих колебаний – величина не постоянная, а изменяющаяся со временем тем быстрее, чем больше коэффициент β. Поэтому определение для амплитуды, данное ранее для незатухающих свободных колебаний, для затухающих колебаний надо изменить.

При небольших затуханиях амплитудой затухающих колебаний называется наибольшее отклонение от положения равновесия за период.

Изменение амплитуды затухающих колебаний происходит по экспоненциальному закону:

Пусть за время τ амплитуда колебаний уменьшится в "e " раз ("е" – основание натурального логарифма, е ≈ 2,718). Тогда, с одной стороны, , а с другой стороны, расписав амплитуды А зат. (t) и А зат. (t+τ), имеем . Из этих соотношений следует βτ = 1, отсюда

Вынужденные колеб.

1.10. УРАВНЕНИЕ ДИНАМИКИ ВРАЩАТЕЛЬНОГО ДВИЖЕНИЯ

Твердое тело как система материальных точек. Движение центра инерции твердого тела. Кинетическая энергия вращающе гося тела. Понятие момента инерции относительно неподвижной оси. Теорема Штейнера. Моменты инерции некоторых простейших тел. Уравнение динамики вращательного движения относительно неподвижной оси.

Движение твердого тела в общем случае определяется двумя векторными уравнениями. Одно из них - уравнение движения центра масс (4.11), другое-уравнение моментов в С -системе (6.24):

(10 . 1 )

Зная законы действующих внешних сил, точки их приложения и начальные условия, можно с помощью этих уравнений найти как скорость, так и положение каждой точки твердого тела в любой момент времени, т. е. полностью решить задачу о движении тела. Однако, несмотря на кажущуюся простоту уравнений (10.1), решение их в общем случае представляет собой весьма трудную задачу. Это прежде всего обусловлено тем обстоятельством, что связь между собственным моментом импульса и скоростями отдельных точек твердого тела в С -системе оказывается сложной, за исключением немногих частных случаев. Мы не будем рассматривать эту задачу в общем виде (она решается в курсе теоретической механики) и ограничимся в дальнейшем только отдельными частными случаями.

Если перенести силы вдоль направления их действия, то ясно, что не изменятся ни их результирующая , ни их суммарный момент . При этом уравнения (10.1) тоже не изменятся, а следовательно не изменится и движение твердого тела. Поэтому точки приложения внешних сил можно переносить вдоль направления действия сил - удобный прием решения задач, которым постоянно пользуются.

Рассмотрим теперь понятие равнодействующей силы. В тех случаях, когда суммарный момент всех внешних сил оказывается перпендикулярным результирующей силе, т. е. , все внешние силы могут быть сведены к одной силе , действующей вдоль определенной прямой. В самом деле, если относительно некоторой точки О суммарный момент , то всегда можно найти такой вектор (рис. 10.1), что при заданных и

При этом выбор неоднозначен: прибавление к нему любого вектора ,

параллельного , не изменит последнего равенства. А это означает, что данное равенство определяет не точку "приложения" силы , а линию ее действия. Зная модули M и F соответствующих векторов, можно найти плечо l силы (рис.6.14): .

Таким образом, если , систему сил, действующих на отдельные точки твердого тела, можно заменить одной равнодействующей силой - силой, которая равна результирующей и создает момент, равный суммарному моменту всех внешних сил.

Таким случаем является действие однородного силового поля, например поля тяжести, в котором действующая на каждую частицу сила имеет вид . В этом случае суммарный момент сил тяжести относительно любой точки О равен

Стоящая в круглых скобках сумма, равна где масса тела радиус-вектор его центра масс относительно точки O . Поэтому

Это означает, что равнодействующая сил тяжести проходит через центр масс тела. Обычно говорят, что равнодействующая сил тяжести приложена к центру масс тела или к его центру тяжести. Момент этой силы относительно центра масс тела равен нулю.

Теперь перейдем к рассмотрению частных случаев движения твердого тела.

Вращение вокруг неподвижной оси.

Рассмотрим вращение твердого тела вокруг неподвижной оси. Найдем выражение для момента импульса твердого тела относительно оси 00" (рис. 6.15). Момент импульса частицы можно записать в виде

где и - масса и расстояние от оси вращения частицы твердого тела, - его угловая скорость. Обозначив величину, стоящую в круглых скобках, через I, получим

(10 .2)

Моментом инерции материальной точки относительно оси вращения называется произведение массы этой точки на квадрат кратчайшего расстояния от оси.

Моментом инерции системы (тела) относительно оси вращения называется физическая величина, равная сумме произведений масс n материальных точек системы на квадраты их расстояний до рассматриваемой оси.

Момент инерции твердого тела зависит от распределения масс относительно интересующей нас оси и является величиной аддитивной. Вычисление момента инерции тела проводится по формуле

где dm и dV - масса и объем элемента тела, находящегося на расстоянии от интересующей нас оси z, - плотность тела в данной точке.

Моменты инерции некоторых однородных твердых тел относительно оси, проходящей через центр масс тела, приведены в следующей таблице (здесь т - масса тела):

Вид твердого тела

Положение оси

Момент инерции

Тонкий стержень длины L

Перпендикулярно стержню

Сплошной цилиндр радиуса R

Совпадает с осью цилиндра

Тонкий диск радиуса R

Совпадает с диаметром диска

Шар радиуса R

Проходит через центр шара

Вычисление момента инерции твердого тела произвольной формы относительно той или иной оси представляет собой, вообще говоря, довольно кропотливую в математическом отношении задачу. Однако в некоторых случаях нахождение момента инерции значительно упрощается, если воспользоваться теоремой Штейнера : момент инерции I относительно произвольной оси z равен моменту инерции относительно оси параллельной данной и проходящей через центр масс С тела, плюс произведение массы т тела нa квадрат расстояния а между осями:

(10 . 4 )

Таким образом, если известен момент инерции то нахождение момента инерции I элементарно. Например, момент инерции тонкого стержня (массы т и длины l ) относительно оси, перпендикулярной стержню и проходящей через его конец, равен

Кинетическая энергия вращательного движения - энергия тела, связанная с его вращением. Получим выражение для кинетической энергии вращающегося твердого тела с неподвижной осью вращения. Учитывая связь скорости частицы вращающегося твердого тела с угловой скоростью запишем

или, более коротко

где - момент инерции тела относительно оси вращения, проходящей через его центр масс, -угловая скорость тела, т - его масса, - скорость центра инерции тела в K-системе отсчета. Таким образом, кинетическая энергия твердого тела при плоском движении складывается из энергии вращения в С-системе и энергии, связанной с движением центра масс .

Запишем основное уравнение динамики вращения твердого тела с неподвижной осью вращения. Это уравнение легко получить, как следствие как следствие уравнения моментов для материальной точки, если продифференцировать (10.2) по времени, тогда

(10 . 7 )

где - суммарный момент всех внешних сил относительно оси вращения, проекция углового ускорения на ось вращения. Из этого уравнения, в частности, видно, что момент инерции I определяет инерционные свойства твердого тела при вращении: при одном и том же значении момента сил тело с большим моментом инерции приобретает меньшее угловое ускорение. Моменты сил относительно оси - величины алгебраические: их знаки зависят как от выбора положительного направления оси z , совпадающей с осью вращения, так и от направления

"вращения" соответствующего момента силы. Например, выбрав положительное направление оси z , как показано на рис. 10.3, мы тем самым задаем и положительное направление отсчета угла - оба эти направления связаны правилом правого винта. Полагают, что если некоторый момент "вращает" в положительном направлении угла, то он считается положительным, и наоборот. А знак суммарного момента в свою очередь определяет знак - проекции вектора углового ускорения на ось z.

Интегрирование уравнения (10.7) с учетом начальных условий -значений угловой скорости и угла и начальный момент времени - позволяет полностью решить задачу о вращении твердого тела вокруг неподвижной оси, т. е. найти зависимость от времени угловой скорости и угла поворота.

Заметим, что уравнение (10.7) справедливо в любой системе отсчета, жестко связанной с осью вращения. Однако если система отсчета неинерциальная, то необходимо помнить, что момент сил включает в себя не только моменты сил взаимодействия с другими телами, но и моменты сил инерции.

Часто мы слышим выражения: «он инертный», «двигаться по инерции», «момент инерции». В переносном значении слово «инерция» может трактоваться как отсутствие инициативы и действий. Нас же интересует прямое значение.

Что такое инерция

Согласно определению инерция в физике – это способность тел сохранять состояние покоя или движения в отсутствие действия внешних сил.

Если с самим понятием инерции все понятно на интуитивном уровне, то момент инерции – отдельный вопрос. Согласитесь, сложно представить в уме, что это такое. В этой статье Вы научитесь решать базовые задачи на тему «Момент инерции» .

Определение момента инерции

Из школьного курса известно, что масса – мера инертности тела . Если мы толкнем две тележки разной массы, то остановить сложнее будет ту, которая тяжелее. То есть чем больше масса, тем большее внешнее воздействие необходимо, чтобы изменить движение тела. Рассмотренное относится к поступательному движению, когда тележка из примера движется по прямой.

По аналогии с массой и поступательным движением момент инерции – это мера инертности тела при вращательном движении вокруг оси.

Момент инерции – скалярная физическая величина, мера инертности тела при вращении вокруг оси. Обозначается буквой J и в системе СИ измеряется в килограммах, умноженных на квадратный метр.

Как посчитать момент инерции? Есть общая формула, по которой в физике вычисляется момент инерции любого тела. Если тело разбить на бесконечно малые кусочки массой dm , то момент инерции будет равен сумме произведений этих элементарных масс на квадрат расстояния до оси вращения.

Это общая формула для момента инерции в физике. Для материальной точки массы m , вращающейся вокруг оси на расстоянии r от нее, данная формула принимает вид:

Теорема Штейнера

От чего зависит момент инерции? От массы, положения оси вращения, формы и размеров тела.

Теорема Гюйгенса-Штейнера – очень важная теорема, которую часто используют при решении задач.

Кстати! Для наших читателей сейчас действует скидка 10% на любой вид работы

Теорема Гюйгенса-Штейнера гласит:

Момент инерции тела относительно произвольной оси равняется сумме момента инерции тела относительно оси, проходящей через центр масс параллельно произвольной оси и произведения массы тела на квадрат расстояния между осями.

Для тех, кто не хочет постоянно интегрировать при решении задач на нахождение момента инерции, приведем рисунок с указанием моментов инерции некоторых однородных тел, которые часто встречаются в задачах:


Пример решения задачи на нахождение момента инерции

Рассмотрим два примера. Первая задача – на нахождение момента инерции. Вторая задача – на использование теоремы Гюйгенса-Штейнера.

Задача 1. Найти момент инерции однородного диска массы m и радиуса R. Ось вращения проходит через центр диска.

Решение:

Разобьем диск на бесконечно тонкие кольца, радиус которых меняется от 0 до R и рассмотрим одно такое кольцо. Пусть его радиус – r , а масса – dm . Тогда момент инерции кольца:

Массу кольца можно представить в виде:

Здесь dz – высота кольца. Подставим массу в формулу для момента инерции и проинтегрируем:

В итоге получилась формула для момента инерции абсолютного тонкого диска или цилиндра.

Задача 2. Пусть опять есть диск массы m и радиуса R. Теперь нужно найти момент инерции диска относительно оси, проходящей через середину одного из его радиусов.

Решение:

Момент инерции диска относительно оси, проходящей через центр масс, известен из предыдущей задачи. Применим теорему Штейнера и найдем:

Кстати, в нашем блоге Вы можете найти и другие полезные материалы по физике и решению задач .

Надеемся, что Вы найдете в статье что-то полезное для себя. Если в процессе расчета тензора инерции возникают трудности, не забывайте о студенческом сервисе . Наши специалисты проконсультируют по любому вопросу и помогут решить задачу в считанные минуты.



Что еще почитать