Формула Томсона. Колебательный контур. Свободные электромагнитные колебания. Превращение энергии в колебательном контуре. Формула Томпсона Формулировка томсона

Если сравнить рис. 50 с рис. 17, на котором показаны колебания тела на пружинах, то нетрудно установить большое сходство во всех стадиях процесса. Можно составить своего рода «словарь», с помощью которого описание электрических колебаний можно тотчас же перевести на описание механических, и обратно. Вот этот словарь.

Попробуйте перечитать предыдущий параграф с этим «словарем». В начальный момент конденсатор заряжен (тело отклонено), т. е. системе сообщен запас электрической (потенциальной) энергии. Начинает течь ток (тело приобретает скорость), через четверть периода ток и магнитная энергия наибольшие, а конденсатор разряжен, заряд на нем равен нулю (скорость тела и его кинетическая энергия наибольшие, причем тело проходит через положение равновесия), и т.д.

Заметим, что начальный заряд конденсатора и, следовательно, напряжение на нем создаются электродвижущей силой батареи. С другой стороны, начальное отклонение тела создается приложенной извне силой. Таким образом, сила, действующая на механическую колебательную систему, играет роль, аналогичную электродвижущей силе, действующей на электрическую колебательную систему. Наш «словарь» может быть поэтому дополнен еще одним «переводом»:

7) сила, 7) электродвижущая сила.

Сходство закономерностей обоих процессов идет и дальше. Механические колебания затухают из-за трения: при каждом колебании часть энергии превращается из-за трения в теплоту, поэтому амплитуда делается все меньше. Точно так же при каждой перезарядке конденсатора часть энергии тока переходит в теплоту, выделяющуюся из-за наличия сопротивления у провода катушки. Поэтому и электрические колебания в контуре тоже затухают. Сопротивление играет для электрических колебаний ту же роль, что трение для механических колебаний.

В 1853г. английский физик Вильям Томсон (лорд Кельвин, 1824-1907) показал теоретически, что собственные электрические колебания в контуре, состоящем из конденсатора емкости и катушки индуктивности , являются гармоническими, и период их выражается формулой

( - в генри, - в фарадах, - в секундах). Эта простая и очень важная формула называется формулой Томсона. Сами колебательные контуры с емкостью и индуктивностью часто тоже называют томсоновскими, так как Томсон впервые дал теорию электрических колебаний в таких контурах. В последнее время все чаще используется термин «-контур» (и аналогично «-контур», «-контур» и т. п.).

Сравнивая формулу Томсона с формулой, определяющей период гармонических колебаний упругого маятника (§ 9), , мы видим, что масса тела играет такую же роль, как индуктивность , а жесткость пружины - такую же роль, как величина, обратная емкости (). В соответствии с этим в нашем «словаре» вторую строку можно записать и так:

2) жесткость пружины 2) величина, обратная емкости конденсатора.

Подбирая разные и , можно получить любые периоды электрических колебаний. Естественно, в зависимости от периода электрических колебаний надо пользоваться различными способами их наблюдения и записи (осциллографирования). Если взять, например, и , то период будет

т. е. колебания будут происходить с частотой около . Это пример электрических колебаний, частота которых лежит в звуковом диапазоне. Такие колебания можно услышать при помощи телефона и записать на шлейфовом осциллографе. Электронный осциллограф позволяет получить развертку как таких, так и более высокочастотных колебаний. В радиотехнике используются чрезвычайно быстрые колебания - с частотами во много миллионов герц. Электронный осциллограф позволяет наблюдать их форму так же хорошо, как мы можем с помощью следа маятника на закопченной пластинке (§ 3) видеть форму колебаний маятника. Осциллографирование свободных электрических колебаний при однократном возбуждении колебательного контура обычно не применяется. Дело в том, что состояние равновесия в контуре устанавливается всего лишь за несколько периодов, или, в лучшем случае, за несколько десятков периодов (в зависимости от соотношения между индуктивностью контура , его емкостью и сопротивлением ). Если, скажем, процесс затухания практически заканчивается за 20 периодов, то в приведенном выше примере контура с периодам в вся вспышка свободных колебаний займет всего и уследить за осциллограммой при простом визуальном наблюдении будет весьма трудно. Задача легко решается, если весь процесс - от возбуждения колебаний до их практически полного угасания - периодически повторять. Сделав развертывающее напряжение электронного осциллографа тоже периодическим и синхронным с процессом возбуждения колебаний, мы заставим электронный пучок многократно «рисовать» одну и ту же осциллограмму на одном и том же месте экрана. При достаточно частом повторении наблюдаемая на экране картина вообще будет казаться непрерывающейся, т. е. мы усидим неподвижную и неизменную кривую, представление о которой дает рис. 49, б.

В схеме с переключателем, показанной на рис. 49, а, многократное повторение процесса можно получить просто, периодически перебрасывая переключатель из одного положения в другое.

Радиотехника располагает для этой же гораздо более совершенными и быстрым электрическими способами переключения, использующими схемы с электронными лампами. Но еще до изобретения электронных ламп был придуман остроумный способ периодического повторения возбуждения затухающих колебаний в контуре, основанный на использовании искрового заряда. Ввиду простоты и наглядности этого способа мы остановимся на нем несколько подробнее.

Рис. 51. Схема искрового возбуждения колебаний в контуре

Колебательный контур разорван небольшим промежутком (искровой промежуток 1), концы которого присоединены ко вторичной обмотке повышающего трансформатора 2 (рис. 51). Ток от трансформатора заряжает конденсатор 3 до тех пор, пока напряжение на искровом промежутке не станет равным напряжению пробоя (см. том II, §93). В этот момент в искровом промежутке происходит искровой разряд, который замыкает контур, так как столбик сильно ионизованного газа в канале искры проводит ток почти так же хорошо, как и металл. В таком замкнутом контуре возникнут электрические колебания, как это описано выше. Пока искровой промежуток хорошо проводит ток, вторичная обмотка трансформатора практически замкнута искрой накоротко, так что все напряжение трансформатора падает на его вторичной обмотке, сопротивление которой значительно больше сопротивления искры. Следовательно, при хорошо проводящем искровом промежутке трансформатор практически не доставляет энергии контуру. В силу того, что контур обладает сопротивлением, часть колебательное энергии расходуется на джоулево тепло, а также на процессы в искре, колебания затухают и через короткое время амплитуды тока и напряжения падают настолько, что искра гаснет. Тогда электрические колебания обрываются. С этого момента трансформатор вновь заряжает конденсатор, пока опять не произойдет пробой, и весь процесс повторится (рис. 52). Таким образом, образование искры и ее погасание играют роль автоматического переключателя, обеспечивающего повторение колебательного процесса.

Рис. 52. Кривая а) показывает, как меняется высокое напряжение на разомкнутой вторичной обмотке трансформатора. В те моменты, когда это напряжение достигает напряжения пробоя , в искровом промежутке проскакивает искра, контур замыкается, получается вспышка затухающих колебаний – кривые б)

Формула Томсона названа в честь английского физика Уильяма Томсона , который вывел её в 1853 году , и связывает период собственных электрических или электромагнитных колебаний в контуре с его ёмкостью и индуктивностью .

Формула Томсона выглядит следующим образом :

T = 2\pi \sqrt{LC}

См. также

Напишите отзыв о статье "Формула Томсона"

Примечания

Отрывок, характеризующий Формула Томсона

– Да, да, знаю. Пойдем, пойдем… – сказал Пьер и вошел в дом. Высокий плешивый старый человек в халате, с красным носом, в калошах на босу ногу, стоял в передней; увидав Пьера, он сердито пробормотал что то и ушел в коридор.
Большого ума были, а теперь, как изволите видеть, ослабели, – сказал Герасим. – В кабинет угодно? – Пьер кивнул головой. – Кабинет как был запечатан, так и остался. Софья Даниловна приказывали, ежели от вас придут, то отпустить книги.
Пьер вошел в тот самый мрачный кабинет, в который он еще при жизни благодетеля входил с таким трепетом. Кабинет этот, теперь запыленный и нетронутый со времени кончины Иосифа Алексеевича, был еще мрачнее.
Герасим открыл один ставень и на цыпочках вышел из комнаты. Пьер обошел кабинет, подошел к шкафу, в котором лежали рукописи, и достал одну из важнейших когда то святынь ордена. Это были подлинные шотландские акты с примечаниями и объяснениями благодетеля. Он сел за письменный запыленный стол и положил перед собой рукописи, раскрывал, закрывал их и, наконец, отодвинув их от себя, облокотившись головой на руки, задумался.

Если плоская монохроматическая электромагнитная волна падает на свободную частицу с зарядом и массой , то частица испытывает ускорение и, следовательно, излучает. Направление излучения не совпадает с направлением падающей волны, частота же его при нерелятивистском движении совпадает с частотой падающего поля. В целом этот эффект можно рассматривать как рассеяние падающего излучения.

Мгновенное значение мощности излучения для частицы с зарядом при нерелятивистском движении определяется формулой Лармора (14.21):

где - угол между направлением наблюдения и ускорением. Ускорение обусловлено действием падающей плоской электромагнитной волны. Обозначая волновой вектор через к, а вектор поляризации -

через , запишем электрическое поле волны в виде

Согласно нерелятивистскому уравнению движения, ускорение равно

(14.99)

Если предположить, что смещение заряда за период колебания много меньше длины волны, то средний по времени квадрат ускорения будет равен При этом средняя мощность, излучаемая в единицу телесного угла, равна

Так как описываемое явление проще всего рассматривать как рассеяние, удобно ввести эффективное дифференциальное сечение рассеяния, определив его следующим образом:

Поток энергии падающей волны определяется средним по времени значением вектора Пойнтинга для плоской волны, т. е. равен . Таким образом, согласно (14.100), для дифференциального эффективного сечения, рассеяния получаем

Если падающая волна распространяется в направлении оси , а вектор поляризации составляет угол с осью как показано на фиг. 14.12, то угловое распределение определяется множителем

Для неполяризованного падающего излучения дифференциальное сучение рассеяния получается усреднением по углу , что приводит к соотношению

Это - так называемая формула Томсона для рассеяния падающего излучения на свободном заряде. Она описывает рассеяние рентгеновских лучей на электронах или у-лучей на протонах. Угловое

распределение излучения изображено на фиг. 14.13 (сплошная кривая). Для полного эффективного сечения рассеяния, так называемого томсоновского сечения рассеяния, получаем

Для электронов . Величина см, имеющая размерность длины, называется обычно классическим радиусом электрона, так как однородное распределение заряда, равного заряду электрона, должно иметь радиус такого порядка, чтобы собственная электростатическая энергия была равна массе покоя электрона (см. гл. 17).

Классический результат Томсона справедлив лишь на низких частотах. Если частота со становится сравнимой с величиной , т. е. если энергия фотона сравнима или превышает энергию покоя, то начинают существенно сказываться квантовомеханические эффекты. Возможна и другая интерпретация указанного критерия: можно ожидать появления квантовых эффектов, когда длина волны излучения становится сравнимой или меньше комптоновской длины волны частицы На высоких частотах угловое распределение излучения более сконцентрировано в направлении падающей волны, как показано пунктирными кривыми на фиг. 14.13; при этом, однако, сечение излучения для нулевого угла всегда совпадает с определенным по формуле Томсона.

Полное сечение рассеяния оказывается меньше томсоновского сечения рассеяния (14.105). Это так называемое комптоновское рассеяние. Для электронов оно описывается формулой Клейна - Нишины. Здесь мы приведем для справок асимптотические выражения

полного сечения рассеяния, определяемого по формуле Клейна - Нишины.

  • Электромагнитные колебания – это периодические изменения со временем электрических и магнитных величин в электрической цепи.
  • Свободными называются такие колебания , которые возникают в замкнутой системе вследствие отклонения этой системы от состояния устойчивого равновесия.

При колебаниях происходит непрерывный процесс превращения энергии системы из одной формы в другую. В случае колебаний электромагнитного поля обмен может идти только между электрической и магнитной составляющей этого поля. Простейшей системой, где может происходить этот процесс, является колебательный контур .

  • Идеальный колебательный контур (LC-контур ) - электрическая цепь, состоящая из катушки индуктивностью L и конденсатора емкостью C .

В отличие от реального колебательного контура, который обладает электрическим сопротивлением R , электрическое сопротивление идеального контура всегда равна нулю. Следовательно, идеальный колебательный контур является упрощенной моделью реального контура.

На рисунке 1 изображена схема идеального колебательного контура.

Энергии контура

Полная энергия колебательного контура

\(W=W_{e} + W_{m}, \; \; \; W_{e} =\dfrac{C\cdot u^{2} }{2} = \dfrac{q^{2} }{2C}, \; \; \; W_{m} =\dfrac{L\cdot i^{2}}{2},\)

Где W e - энергия электрического поля колебательного контура в данный момент времени, С - электроемкость конденсатора, u - значение напряжения на конденсаторе в данный момент времени, q - значение заряда конденсатора в данный момент времени, W m - энергия магнитного поля колебательного контура в данный момент времени, L - индуктивность катушки, i -значение силы тока в катушке в данный момент времени.

Процессы в колебательном контуре

Рассмотрим процессы, которые возникают в колебательном контуре.

Для выведения контура из положения равновесия зарядим конденсатор так, что на его обкладках будет заряд Q m (рис. 2, положение 1 ). С учетом уравнения \(U_{m}=\dfrac{Q_{m}}{C}\) находим значение напряжения на конденсаторе. Тока в цепи в этом момент времени нет, т.е. i = 0.

После замыкания ключа под действием электрического поля конденсатора в цепи появится электрический ток, сила тока i которого будет увеличиваться с течением времени. Конденсатор в это время начнет разряжаться, т.к. электроны, создающие ток, (Напоминаю, что за направление тока принято направление движения положительных зарядов) уходят с отрицательной обкладки конденсатора и приходят на положительную (см. рис. 2, положение 2 ). Вместе с зарядом q будет уменьшаться и напряжение u \(\left(u = \dfrac{q}{C} \right).\) При увеличении силы тока через катушку возникнет ЭДС самоиндукции, препятствующая изменению силы тока. Вследствие этого, сила тока в колебательном контуре будет возрастать от нуля до некоторого максимального значения не мгновенно, а в течение некоторого промежутка времени, определяемого индуктивностью катушки.

Заряд конденсатора q уменьшается и в некоторый момент времени становится равным нулю (q = 0, u = 0), сила тока в катушке достигнет некоторого значения I m (см. рис. 2, положение 3 ).

Без электрического поля конденсатора (и сопротивления) электроны, создающие ток, продолжают свое движение по инерции. При этом электроны, приходящие на нейтральную обкладку конденсатора, сообщают ей отрицательный заряд, электроны, уходящие с нейтральной обкладки, сообщают ей положительный заряд. На конденсаторе начинает появляться заряд q (и напряжение u ), но противоположного знака, т.е. конденсатор перезаряжается. Теперь новое электрическое поле конденсатора препятствует движению электронов, поэтому сила тока i начинает убывать (см. рис. 2, положение 4 ). Опять же это происходит не мгновенно, поскольку теперь ЭДС самоиндукции стремится скомпенсировать уменьшение тока и «поддерживает» его. А значение силы тока I m (в положении 3 ) оказывается максимальным значением силы тока в контуре.

И снова под действием электрического поля конденсатора в цепи появится электрический ток, но направленный в противоположную сторону, сила тока i которого будет увеличиваться с течением времени. А конденсатор в это время будет разряжаться (см. рис. 2, положение 6 )до нуля (см. рис. 2, положение 7 ). И так далее.

Так как заряд на конденсаторе q (и напряжение u ) определяет его энергию электрического поля W e \(\left(W_{e}=\dfrac{q^{2}}{2C}=\dfrac{C \cdot u^{2}}{2} \right),\) а сила тока в катушке i - энергию магнитного поля Wm \(\left(W_{m}=\dfrac{L \cdot i^{2}}{2} \right),\) то вместе с изменениями заряда, напряжения и силы тока, будут изменяться и энергии.

Обозначения в таблице:

\(W_{e\, \max } =\dfrac{Q_{m}^{2} }{2C} =\dfrac{C\cdot U_{m}^{2} }{2}, \; \; \; W_{e\, 2} =\dfrac{q_{2}^{2} }{2C} =\dfrac{C\cdot u_{2}^{2} }{2}, \; \; \; W_{e\, 4} =\dfrac{q_{4}^{2} }{2C} =\dfrac{C\cdot u_{4}^{2} }{2}, \; \; \; W_{e\, 6} =\dfrac{q_{6}^{2} }{2C} =\dfrac{C\cdot u_{6}^{2} }{2},\)

\(W_{m\; \max } =\dfrac{L\cdot I_{m}^{2} }{2}, \; \; \; W_{m2} =\dfrac{L\cdot i_{2}^{2} }{2}, \; \; \; W_{m4} =\dfrac{L\cdot i_{4}^{2} }{2}, \; \; \; W_{m6} =\dfrac{L\cdot i_{6}^{2} }{2}.\)

Полная энергия идеального колебательного контура сохраняется с течением времени, поскольку в нем потерь энергии (нет сопротивления). Тогда

\(W=W_{e\, \max } = W_{m\, \max } = W_{e2} + W_{m2} = W_{e4} +W_{m4} = ...\)

Таким образом, в идеальном LC -контуре будут происходить периодические изменения значений силы тока i , заряда q и напряжения u , причем полная энергия контура при этом будет оставаться постоянной. В этом случае говорят, что в контуре возникли свободные электромагнитные колебания .

  • Свободные электромагнитные колебания в контуре - это периодические изменения заряда на обкладках конденсатора, силы тока и напряжения в контуре, происходящие без потребления энергии от внешних источников.

Таким образом, возникновение свободных электромагнитных колебаний в контуре обусловлено перезарядкой конденсатора и возникновением ЭДС самоиндукции в катушке, которая «обеспечивает» эту перезарядку. Заметим, что заряд конденсатора q и сила тока в катушке i достигают своих максимальных значений Q m и I m в различные моменты времени.

Свободные электромагнитные колебания в контуре происходят по гармоническому закону:

\(q=Q_{m} \cdot \cos \left(\omega \cdot t+\varphi _{1} \right), \; \; \; u=U_{m} \cdot \cos \left(\omega \cdot t+\varphi _{1} \right), \; \; \; i=I_{m} \cdot \cos \left(\omega \cdot t+\varphi _{2} \right).\)

Наименьший промежуток времени, в течение которого LC -контур возвращается в исходное состояние (к начальному значению заряда данной обкладки), называется периодом свободных (собственных) электромагнитных колебаний в контуре.

Период свободных электромагнитных колебаний в LC -контуре определяется по формуле Томсона:

\(T=2\pi \cdot \sqrt{L\cdot C}, \;\;\; \omega =\dfrac{1}{\sqrt{L\cdot C}}.\)

Сточки зрения механической аналогии, идеальному колебательному контурусоответствует пружинный маятник без трения, а реальному - с трением. Вследствиедействия сил трения колебания пружинного маятника затухают с течением времени.

*Вывод формулы Томсона

Поскольку полная энергия идеального LC -контура, равная сумме энергий электростатического поля конденсатора и магнитного поля катушки, сохраняется, то в любой момент времени справедливо равенство

\(W=\dfrac{Q_{m}^{2} }{2C} =\dfrac{L\cdot I_{m}^{2} }{2} =\dfrac{q^{2} }{2C} +\dfrac{L\cdot i^{2} }{2} ={\rm const}.\)

Получим уравнение колебаний в LC -контуре, используя закон сохранения энергии. Продифференцировав выражение для его полной энергии по времени, с учетом того, что

\(W"=0, \;\;\; q"=i, \;\;\; i"=q"",\)

получаем уравнение, описывающее свободные колебания в идеальном контуре:

\(\left(\dfrac{q^{2} }{2C} +\dfrac{L\cdot i^{2} }{2} \right)^{{"} } =\dfrac{q}{C} \cdot q"+L\cdot i\cdot i" = \dfrac{q}{C} \cdot q"+L\cdot q"\cdot q""=0,\)

\(\dfrac{q}{C} +L\cdot q""=0,\; \; \; \; q""+\dfrac{1}{L\cdot C} \cdot q=0.\)

Переписав его в виде:

\(q""+\omega ^{2} \cdot q=0,\)

замечаем, что это - уравнение гармонических колебаний с циклической частотой

\(\omega =\dfrac{1}{\sqrt{L\cdot C} }.\)

Соответственно период рассматриваемых колебаний

\(T=\dfrac{2\pi }{\omega } =2\pi \cdot \sqrt{L\cdot C}.\)

Литература

  1. Жилко, В.В. Физика: учеб. пособие для 11 класса общеобразоват. шк. с рус. яз. обучения / В.В. Жилко, Л.Г. Маркович. - Минск: Нар. Асвета, 2009. - С. 39-43.


Что еще почитать