Теорема о сумме углов треугольника. Чему равна сумма углов выпуклого многоугольника Чему равна сумма углов

Доказательство

Пусть ABC" - произвольный треугольник. Проведем через вершину B прямую, параллельную прямой AC (такая прямая называется прямой Евклида). Отметим на ней точку D так, чтобы точки A и D лежали по разные стороны от прямой BC .Углы DBC и ACB равны как внутренние накрест лежащие, образованные секущей BC с параллельными прямыми AC и BD . Поэтому сумма углов треугольника при вершинах B и С равна углу ABD .Сумма всех трех углов треугольника равна сумме углов ABD и BAC . Так как эти углы внутренние односторонние для параллельных AC и BD при секущей AB , то их сумма равна 180°. Теорема доказана.

Следствия

Из теоремы следует, что у любого треугольника два угла острые. Действительно, применяя доказательство от противного , допустим, что у треугольника только один острый угол или вообще нет острых углов. Тогда у этого треугольника есть, по крайней мере, два угла, каждый из которых не меньше 90°. Сумма этих углов не меньше 180°. А это невозможно, так как сумма всех углов треугольника равна 180°. Что и требовалось доказать.

Обобщение в симплекс теории

Где -угол между i и j гранями симплекса.

Примечания

  • На сфере сумма углов треугольника всегда превышает 180°, разница называется сферическим избытком и пропорциональна площади треугольника.
  • В плоскости Лобачевского сумма углов треугольника всегда меньше 180°. Разность также пропорциональна площади треугольника.

См. также


Wikimedia Foundation . 2010 .

Смотреть что такое "Теорема о сумме углов треугольника" в других словарях:

    Свойство многоугольников в евклидовой геометрии: Сумма углов n угольника равна 180°(n 2). Содержание 1 Доказательство 2 Замечание … Википедия

    Теорема Пифагора одна из основополагающих теорем евклидовой геометрии, устанавливающая соотношение между сторонами прямоугольного треугольника. Содержание 1 … Википедия

    Теорема Пифагора одна из основополагающих теорем евклидовой геометрии, устанавливающая соотношение между сторонами прямоугольного треугольника. Содержание 1 Формулировки 2 Доказательства … Википедия

    Теорема косинусов обобщение теоремы Пифагора. Квадрат стороны треугольника равен сумме квадратов двух других его сторон без удвоенного произведения этих сторон на косинус угла между ними. Для плоского треугольника со сторонами a,b,c и углом α… … Википедия

    У этого термина существуют и другие значения, см. Треугольник (значения). Треугольник (в евклидовом пространстве) это геометрическая фигура, образованная тремя отрезками, которые соединяют три не лежащие на одной прямой точки. Три точки,… … Википедия

    Стандартные обозначения Треугольник простейший многоугольник, имеющий 3 вершины (угла) и 3 стороны; часть плоскости, ограниченная тремя точками, не лежащими на одной прямой, и тремя отрезками, попарно соединяющими эти точки. Вершины треугольника … Википедия

    Древнегреческий математик. Работал в Александрии в III в. до н. э. Главный труд «Начала» (15 книг), содержащий основы античной математики элементарной геометрии, теории чисел, общей теории отношений и метода определения площадей и объёмов,… … Энциклопедический словарь

    - (умер между 275 и 270 до н. э.) древнегреческий математик. Сведения о времени и месте его рождения до нас не дошли, однако известно, что Евклид жил в Александрии и расцвет его деятельности приходится на время царствования в Египте Птолемея I… … Большой Энциклопедический словарь

    Геометрия, сходная с геометрией Евклида в том, что в ней определено движение фигур, но отличающаяся от евклидовой геометрии тем, что один из пяти ее постулатов (второй или пятый) заменен его отрицанием. Отрицание одного из евклидовых постулатов… … Энциклопедия Кольера

(опорный конспект)

Наглядная геометрия 7 класс. Опорный конспект № 4 Сумма углов треугольника.

Великий французский ученый XVII века Блез Паскаль в детстве любил возиться с геометрическими фигурами. Он был знаком с транспортиром и умел измерять углы. Юный исследователь заметил, что у всех треугольников сумма трех углов получается одна и та же - 180°. «Как же это доказать? - подумал Паскаль. - Ведь нельзя же проверить сумму углов у всех треугольников - их бесконечное множество». Тогда он отрезал ножницами два уголка треугольника и приложил их к третьему углу. Получился развернутый угол, который, как известно, равен 180°. Это было его первое собственное открытие. Дальнейшая судьба мальчика была уже предопределена.

В этой теме вы познакомитесь с пятью признаками равенства прямоугольных треугольников и, пожалуй, с самым популярным свойством прямоугольного треугольника с углом 30°. Оно звучит так: катет, лежащий против угла 30°, равен половине гипотенузы. Разделив равносторонний треугольник высотой, мы сразу получим доказательство этого свойства.

ТЕОРЕМА . Сумма углов треугольника равна 180°. Для доказательства проведем через вершину прямую, параллельную основанию. Темные углы равны и серые углы равны как накрест лежащие при параллельных прямых. Темный угол, серый угол и угол при вершине образуют развернутый угол, их сумма 180°. Из теоремы следует, что углы равностороннего треугольника равны по 60° и что сумма острых углов прямоугольного треугольника равна 90°.

Внешним углом треугольника называется угол, смежный с углом треугольника. Поэтому иногда углы самого треугольника называют внутренними углами.

ТЕОРЕМА о внешнем угле треугольника . Внешний угол треугольника равен сумме двух внутренних, не смежных с ним. Действительно, внешний угол и два внутренних, не смежных с ним, дополняют закрашенный угол до 180°. Из теоремы следует, что внешний угол больше любого внутреннего, не смежного с ним.

ТЕОРЕМА о соотношениях между сторонами и углами треугольника . В треугольнике против большей стороны лежит больший угол, а против большего угла лежит большая сторона. Отсюда следует: 1) Катет меньше гипотенузы. 2) Перпендикуляр меньше наклонной.

Расстояние от точки до прямой . Так как перпендикуляр меньше любой наклонной, проведенной из той же точки, то его длина принимается за расстояние от точки до прямой.

Неравенство треугольника . Длина любой стороны треугольника меньше суммы двух других его сторон, т. е. а < b + с , b < а + с , с < а + b . Следствие . Длина ломаной больше отрезка, соединяющего ее концы.

ПРИЗНАКИ РАВЕНСТВА
ПРЯМОУГОЛЬНЫХ ТРЕУГОЛЬНИКОВ

По двум катетам . Если два катета одного прямоугольного треугольника соответственно равны двум катетам другого треугольника, то такие треугольники равны.

По катету и прилежащему острому углу . Если катет и прилежащий к нему острый угол одного прямоугольного треугольника соответственно равны катету и прилежащему к нему острому углу другого треугольника, то такие треугольники равны.

По катету и противолежащему острому углу . Если катет и противолежащий ему острый угол одного прямоугольного треугольника соответственно равны катету и противолежащему ему острому углу другого треугольника, то такие треугольники равны.

По гипотенузе и острому углу . Если гипотенуза и острый угол одного прямоугольного треугольника соответственно равны гипотенузе и острому углу другого треугольника, то такие треугольники равны.

Доказательство этих признаков сразу сводится к одному из признаков равенства треугольников.

По катету и гипотенузе . Если катет и гипотенуза одного прямоугольного треугольника соответственно равны катету и гипотенузе другого прямоугольного треугольника, то такие треугольники равны.

Доказательство. Приложим треугольники равными катетами. Получим равнобедренный треугольник. Его высота, проведенная из вершины, будет и медианой. Тогда у треугольников равны и вторые катеты, и треугольники равны по трем сторонам.

ТЕОРЕМА о свойстве катета, лежащего против угла 30° . Катет, лежащий против угла 30°, равен половине гипотенузы. Доказывается достроением треугольника до равностороннего.

ТЕОРЕМА о свойстве точек биссектрисы угла . Любая точка биссектрисы угла равноудалена от его сторон. Если точка равноудалена от сторон угла, то она лежит на биссектрисе угла. Доказывается проведением двух перпендикуляров к сторонам угла и рассмотрением прямоугольных треугольников.

Вторая замечательная точка . Биссектрисы треугольника пересекаются в одной точке.

Расстояние между параллельными прямыми . ТЕОРЕМА . Все точки каждой из двух параллельных прямых находятся на равном расстоянии от другой прямой. Из теоремы следует определение расстояния между параллельными прямыми.

Определение . Расстоянием между двумя параллельными прямыми называется расстояние от любой точки одной из параллельных прямых до другой прямой.

Подробные доказательства теорем






Это опорный конспект № 4 по геометрии в 7 классе . Выберите дальнейшие действия:

Треугольник представляет собой многоугольник, имеющий три стороны (три угла). Чаще всего стороны обозначают маленькими буквами, соответствующими заглавным буквам, которыми обозначают противоположные вершины. В данной статье мы ознакомимся с видами этих геометрических фигур, теоремой, которая определяет, чему равняется сумма углов треугольника.

Виды по величине углов

Различают следующие виды многоугольника с тремя вершинами:

  • остроугольный, у которого все углы острые;
  • прямоугольный, имеющий один прямой угол, при его образующие, называют катетами, а сторона, которая размещена противоположно прямому углу, именуется гипотенузой;
  • тупоугольный, когда один ;
  • равнобедренный, у которого две стороны равные, и называются они боковыми, а третья - основанием треугольника;
  • равносторонний, имеющий все три равные стороны.

Свойства

Выделяют основные свойства, которые характерны для каждого вида треугольника:

  • напротив большей стороны всегда располагается больший угол, и наоборот;
  • напротив равных по величине сторон находятся равные углы, и наоборот;
  • у любого треугольника есть два острых угла;
  • внешний угол больше по сравнению с любым внутренним углом, не смежным с ним;
  • сумма каких-либо двух углов всегда меньше 180 градусов;
  • внешний угол равняется сумме остальных двух углов, которые не межуют с ним.

Теорема о сумме углов треугольника

Теорема утверждает, что если сложить все углы данной геометрической фигуры, которая расположена на евклидовой плоскости, то их сумма будет составлять 180 градусов. Попробуем доказать данную теорему.

Пускай у нас есть произвольный треугольник с вершинами КМН.

Через вершину М проведем КН (еще эту прямую называют прямой Евклида). На ней отметим точку А таким образом, чтоб точки К и А были расположены с разных сторон прямой МН. Мы получаем равные углы АМН и КНМ, которые, как и внутренние, лежат накрест и образовываются секущей МН совместно с прямыми КН и МА, которые являются параллельными. Из этого следует, что сумма углов треугольника, расположенных при вершинах М и Н, равняется размеру угла КМА. Все три угла составляют сумму, которая равна сумме углов КМА и МКН. Поскольку данные углы являются внутренними односторонними относительно параллельных прямых КН и МА при секущей КМ, их сумма составляет 180 градусов. Теорема доказана.

Следствие

Из выше доказанной теоремы вытекает следующее следствие: любой треугольник имеет два острых угла. Чтобы это доказать, допустим, что данная геометрическая фигура имеет всего один острый угол. Также можно предположить, что ни один из углов не является острым. В этом случае должно быть как минимум два угла, величина которых равна или больше 90 градусов. Но тогда сумма углов будет больше, чем 180 градусов. А такого быть не может, поскольку согласно теореме сумма углов треугольника равна 180° - не больше и не меньше. Вот это и нужно было доказать.

Свойство внешних углов

Чему равна сумма углов треугольника, которые являются внешними? Ответ на этот вопрос можно получить, применив один из двух способов. Первый заключается в том, что необходимо найти сумму углов, которые взяты по одному при каждой вершине, то есть трех углов. Второй подразумевает, что нужно найти сумму всех шести углов при вершинах. Для начала разберемся с первым вариантом. Итак, треугольник содержит шесть внешних углов - при каждой вершине по два.

Каждая пара имеет равные между собой углы, поскольку они являются вертикальными:

∟1 = ∟4, ∟2 = ∟5, ∟3 = ∟6.

Кроме этого, известно, что внешний угол у треугольника равняется сумме двух внутренних, которые не межуются с ним. Следовательно,

∟1 = ∟А + ∟С, ∟2 = ∟А + ∟В, ∟3 = ∟В + ∟С.

Из этого получается, что сумма внешних углов, которые взяты по одному возле каждой вершины, будет равна:

∟1 + ∟2 + ∟3 = ∟А + ∟С + ∟А + ∟В + ∟В + ∟С = 2 х (∟А + ∟В + ∟С).

С учетом того, что сумма углов равняется 180 градусам, можно утверждать, что ∟А + ∟В + ∟С = 180°. А это значит, что ∟1 + ∟2 + ∟3 = 2 х 180° = 360°. Если же применяется второй вариант, то сумма шести углов будет, соответственно, большей в два раза. То есть сумма внешних углов треугольника будет составлять:

∟1 + ∟2 + ∟3 + ∟4 + ∟5 + ∟6 = 2 х (∟1 + ∟2 + ∟2) = 720°.

Прямоугольный треугольник

Чему равняется сумма углов прямоугольного треугольника, являющихся острыми? Ответ на этот вопрос, опять же, вытекает из теоремы, которая утверждает, что углы в треугольнике в сумме составляют 180 градусов. А звучит наше утверждение (свойство) так: в прямоугольном треугольнике острые углы в сумме дают 90 градусов. Докажем его правдивость.

Пускай нам дан треугольник КМН, у которого ∟Н = 90°. Необходимо доказать, что ∟К + ∟М = 90°.

Итак, согласно теореме о сумме углов ∟К + ∟М + ∟Н = 180°. В нашем условии сказано, что ∟Н = 90°. Вот и получается, ∟К + ∟М + 90° = 180°. То есть ∟К + ∟М = 180° - 90° = 90°. Именно это нам и следовало доказать.

В дополнение к вышеописанным свойствам прямоугольного треугольника, можно добавить и такие:

  • углы, которые лежат против катетов, являются острыми;
  • гипотенуза треугольна больше любого из катетов;
  • сумма катетов больше гипотенузы;
  • катет треугольника, который лежит напротив угла 30 градусов, в два раза меньше гипотенузы, то есть равняется ее половине.

Как еще одно свойство данной геометрической фигуры можно выделить теорему Пифагора. Она утверждает, что в треугольнике с углом 90 градусов (прямоугольном) сумма квадратов катетов равняется квадрату гипотенузы.

Сумма углов равнобедренного треугольника

Ранее мы говорили, что равнобедренным называют многоугольник с тремя вершинами, содержащий две равные стороны. Известно такое свойство данной геометрической фигуры: углы при его основании равны. Докажем это.

Возьмем треугольник КМН, который является равнобедренным, КН - его основание.

От нас требуется доказать, что ∟К = ∟Н. Итак, допустим, что МА - это биссектриса нашего треугольника КМН. Треугольник МКА с учетом первого признака равенства равен треугольнику МНА. А именно по условию дано, что КМ = НМ, МА является общей стороной, ∟1 = ∟2, поскольку МА - это биссектриса. Используя факт равенства этих двух треугольников, можно утверждать, что ∟К = ∟Н. Значит, теорема доказана.

Но нас интересует, какова сумма углов треугольника (равнобедренного). Поскольку в этом отношении у него нет своих особенностей, будем отталкиваться от теоремы, рассмотренной ранее. То есть мы можем утверждать, что ∟К + ∟М + ∟Н = 180°, или 2 х ∟К + ∟М = 180° (поскольку ∟К = ∟Н). Данное свойство доказывать не будем, поскольку сама теорема о сумме углов треугольника была доказана ранее.

Кроме рассмотренных свойств об углах треугольника, имеют место и такие немаловажные утверждения:

  • в которая была опущена на основание, является одновременно медианой, биссектрисой угла, который находится между равными сторонами, а также его основания;
  • медианы (биссектрисы, высоты), которые проведены к боковым сторонам такой геометрической фигуры, равны.

Равносторонний треугольник

Его еще называют правильным, это тот треугольник, у которого равны все стороны. А поэтому равны также и углы. Каждый из них составляет 60 градусов. Докажем это свойство.

Допустим, что у нас есть треугольник КМН. Нам известно, что КМ = НМ = КН. А это значит, что согласно свойству углов, расположенных при основании в равнобедренном треугольнике, ∟К = ∟М = ∟Н. Поскольку согласно теореме сумма углов треугольника ∟К + ∟М + ∟Н = 180°, то 3 х ∟К = 180° или ∟К = 60°, ∟М = 60°, ∟Н = 60°. Таким образом, утверждение доказано.

Как видно из выше приведенного доказательства на основании теоремы, сумма углов как и сумма углов любого другого треугольника, составляет 180 градусов. Снова доказывать эту теорему нет необходимости.

Существуют еще такие свойства, характерные для равностороннего треугольника:

  • медиана, биссектриса, высота в такой геометрической фигуре совпадают, а их длина вычисляется как (а х √3) : 2;
  • если описать вокруг данного многоугольника окружность, то ее радиус будет равен (а х √3) : 3;
  • если вписать в равносторонний треугольник окружность, то ее радиус будет составлять (а х √3) : 6;
  • площадь этой геометрической фигуры вычисляется по формуле: (а2 х √3) : 4.

Тупоугольный треугольник

Согласно определению один из его углов находится в промежутке от 90 до 180 градусов. Но учитывая то, что два остальных угла данной геометрической фигуры острые, можно сделать вывод, что они не превышают 90 градусов. Следовательно, теорема о сумме углов треугольника работает при расчете суммы углов в тупоугольном треугольнике. Получается, мы смело можем утверждать, опираясь на вышеупомянутую теорему, что сумма углов тупоугольного треугольника равна 180 градусам. Опять-таки, данная теорема не нуждается в повторном доказательстве.

Разделы: Математика

Презентация . (Слайд 1)

Тип урока: урок изучения нового материала.

Цели урока:

  • Образовательные :
    • рассмотреть теорему о сумме углов треугольника,
    • показать применение теоремы при решении задач.
  • Воспитательные :
    • воспитание положительного отношения учащихся к знаниям,
    • воспитывать в учащихся средствами урока уверенность в своих силах.
  • Развивающие :
    • развитие аналитического мышления,
    • развитие «умений учиться»: использовать знания, умения и навыки в учебном процессе,
    • развитие логического мышления, способности четко формулировать свои мысли.

Оборудование: интерактивная доска, презентация, карточки.

ХОД УРОКА

I. Организационный момент

– Сегодня на уроке мы вспомним определения прямоугольного, равнобедренного, равностороннего треугольников. Повторим свойства углов треугольников. Применяя свойства внутренних односторонних и внутренних накрест лежащих углов докажем теорему о сумме углов треугольника и научимся применять ее при решении задач.

II. Устно (Слайд 2)

1) Найти на рисунках прямоугольный, равнобедренный, равносторонний треугольники.
2) Дать определение этим треугольникам.
3) Сформулировать свойства углов равностороннего и равнобедренного треугольника.

4) На рисунке KE II NH. (слайд 3)

– Укажите секущие для этих прямых
– Найти внутренние односторонние углы, внутренние накрест лежащие углы, назвать их свойства

III. Объяснение нового материала

Теорема. Сумма углов треугольника равна 180 о

По формулировке теоремы, ребята строят чертеж, записывают условие, заключение. Отвечая на вопросы, самостоятельно доказывают теорему.

Дано:

Доказать:

Доказательство:

1. Через вершину В треугольника проведем прямую BD II AC.
2. Указать секущие для параллельных прямых.
3. Что можно сказать об углах CBD и ACB? (сделать запись)
4. Что мы знаем об углах CAB и ABD? (сделать запись)
5. Заменим угол CBD углом ACB
6. Сделать вывод.

IV. Закончи предложение. (Слайд 4)

1. Сумма углов треугольника равна …
2. В треугольнике один из углов равен, другой, третий угол треугольника равен …
3. Сумма острых углов прямоугольного треугольника равна …
4. Углы равнобедренного прямоугольного треугольника равны …
5. Углы равностороннего треугольника равны...
6. Если угол между боковыми сторонами равнобедренного треугольника равен 1000, то углы при основании равны …

V. Немного истории. (Слайды 5-7)

Доказательство теоремы о сумме углов треугольника «Сумма внутренних
углов треугольника равна двум прямым» приписывают Пифагору (580-500 г.г. до н.э.)

Древнегреческий ученый Прокл (410-485 г.г. н.э.),

Доказательство:

  • Дан треугольник АВС.
  • Через вершину B проведем прямую DK параллельно основанию AC.
  • \angle CBK= \angle C как внутренние накрест лежащие при параллельных DK и AC, и секущей BC.
  • \angle DBA = \angle A внутренние накрест лежащие при DK \parallel AC и секущей AB. Угол DBK развернутый и равен
  • \angle DBK = \angle DBA + \angle B + \angle CBK
  • Так как развернутый угол равен 180 ^\circ , а \angle CBK = \angle C и \angle DBA = \angle A , то получим 180 ^\circ = \angle A + \angle B + \angle C.

Теорема доказана

Следствия из теоремы о сумме углов треугольника:

  1. Сумма острых углов прямоугольного треугольника равна 90° .
  2. В равнобедренном прямоугольном треугольнике каждый острый угол равен 45° .
  3. В равностороннем треугольнике каждый угол равен 60° .
  4. В любом треугольнике либо все углы острые, либо два угла острые, а третий - тупой или прямой.
  5. Внешний угол треугольника равен сумме двух внутренних углов, не смежных с ним.

Теорема о внешнем угле треугольника

Внешний угол треугольника равен сумме двух оставшихся углов треугольника, не смежных с этим внешним углом

Доказательство:

  • Дан треугольник АВС, где ВСD - внешний угол.
  • \angle BAC + \angle ABC +\angle BCA = 180^0
  • Из равенств угол \angle BCD + \angle BCA = 180^0
  • Получаем \angle BCD = \angle BAC+\angle ABC.


Что еще почитать