Уроки три правила нахождения первообразной. Конспект урока по математике: "Правила нахождения первообразных". Основные свойства неопределенного интеграла

Определение. Функция F (x) называется первообразной для функции f (x) на данном промежутке, если для любого х из данного промежутка F"(x)= f (x).

Основное свойство первообразных.

Если F (x) – первообразная функции f (x), то и функция F (x)+ C , где C –произвольная постоянная, также является первообразной функции f (x) (т.е. все первообразные функции f(x) записываются в виде F(x) + С).

Геометрическая интерпретация.

Графики всех первообразных данной функции f (x) получаются из графика какой-либо одной первообразной параллельными переносами вдоль оси Оу.

Таблица первообразных.

Правила нахождения первообразных .

Пусть F(x) и G(x) – первообразные соответственно функций f(x) и g(x). Тогда:

1. F ( x ) ± G ( x ) – первообразная для f ( x ) ± g ( x );

2. а F ( x ) – первообразная для а f ( x );

3. – первообразная для а f ( kx + b ).

Задачи и тесты по теме "Первообразная"

  • Первообразная

    Уроков: 1 Заданий: 11 Тестов: 1

  • Производная и первообразная - Подготовка к ЕГЭ по математике ЕГЭ по математике

    Заданий: 3

  • Интеграл - Первообразная и интеграл 11 класс

    Уроков: 4 Заданий: 13 Тестов: 1

  • Вычисление площадей с помощью интегралов - Первообразная и интеграл 11 класс

    Уроков: 1 Заданий: 10 Тестов: 1

Изучив данную тему, Вы должны знать, что называется первообразной, ее основное свойство, геометрическую интерпретацию, правила нахождения первообразных; уметь находить все первообразные функций с помощью таблицы и правил нахождения первообразных, а также первообразную, проходящую через заданную точку. Рассмотрим решение задач по данной теме на примерах. Обратите внимание на оформление решений.

Примеры.

1. Выяснить, является ли функция F (x ) = х 3 – 3х + 1 первообразной для функции f (x ) = 3(х 2 – 1).

Решение: F"(x ) = (х 3 – 3х + 1)′ = 3х 2 – 3 = 3(х 2 – 1) = f (x ), т.е. F"(x ) = f (x ), следовательно, F(x)является первообразной для функции f(x).

2. Найти все первообразные функции f(x) :

а) f (x ) = х 4 + 3х 2 + 5

Решение: Используя таблицу и правила нахождения первообразных, получим:

Ответ:

б) f (x ) = sin(3x – 2)

Решение:

Решение интегралов - задача легкая, но только для избранных. Эта статья для тех, кто хочет научиться понимать интегралы, но не знает о них ничего или почти ничего. Интеграл... Зачем он нужен? Как его вычислять? Что такое определенный и неопределенный интегралы? Если единственное известное вам применение интеграла – доставать крючком в форме значка интеграла что-то полезное из труднодоступных мест, тогда добро пожаловать! Узнайте, как решать интегралы и почему без этого никак нельзя обойтись.

Изучаем понятие "интеграл"

Интегрирование было известно еще в Древнем Египте. Конечно, не в современном виде, но все же. С тех пор математики написали очень много книг по этой теме. Особенно отличились Ньютон и Лейбниц , но суть вещей не изменилась. Как понять интегралы с нуля? Никак! Для понимания этой темы все равно понадобятся базовые знания основ математического анализа. Сведения о , необходимые и для понимания интегралов, уже есть у нас в блоге.

Неопределенный интеграл

Пусть у нас есть какая-то функция f(x) .

Неопределенным интегралом функции f(x) называется такая функция F(x) , производная которой равна функции f(x) .

Другими словами интеграл – это производная наоборот или первообразная. Кстати, о том, как читайте в нашей статье.


Первообразная существует для всех непрерывных функций. Также к первообразной часто прибавляют знак константы, так как производные функций, различающихся на константу, совпадают. Процесс нахождения интеграла называется интегрированием.

Простой пример:

Чтобы постоянно не высчитывать первообразные элементарных функций, их удобно свести в таблицу и пользоваться уже готовыми значениями.

Полная таблица интегралов для студентов


Определенный интеграл

Имея дело с понятием интеграла, мы имеем дело с бесконечно малыми величинами. Интеграл поможет вычислить площадь фигуры, массу неоднородного тела, пройденный при неравномерном движении путь и многое другое. Следует помнить, что интеграл – это сумма бесконечно большого количества бесконечно малых слагаемых.

В качестве примера представим себе график какой-нибудь функции. Как найти площадь фигуры, ограниченной графиком функции?


С помощью интеграла! Разобьем криволинейную трапецию, ограниченную осями координат и графиком функции, на бесконечно малые отрезки. Таким образом фигура окажется разделена на тонкие столбики. Сумма площадей столбиков и будет составлять площадь трапеции. Но помните, что такое вычисление даст примерный результат. Однако чем меньше и уже будут отрезки, тем точнее будет вычисление. Если мы уменьшим их до такой степени, что длина будет стремиться к нулю, то сумма площадей отрезков будет стремиться к площади фигуры. Это и есть определенный интеграл, который записывается так:


Точки а и b называются пределами интегрирования.


Бари Алибасов и группа "Интеграл"

Кстати! Для наших читателей сейчас действует скидка 10% на

Правила вычисления интегралов для чайников

Свойства неопределенного интеграла

Как решать неопределенный интеграл? Здесь мы рассмотрим свойства неопределенного интеграла, которые пригодятся при решении примеров.

  • Производная от интеграла равна подынтегральной функции:

  • Константу можно выносить из-под знака интеграла:

  • Интеграл от суммы равен сумме интегралов. Верно также для разности:

Свойства определенного интеграла

  • Линейность:

  • Знак интеграла изменяется, если поменять местами пределы интегрирования:

  • При любых точках a , b и с :

Мы уже выяснили, что определенный интеграл - это предел суммы. Но как получить конкретное значение при решении примера? Для этого существует формула Ньютона-Лейбница:

Примеры решения интегралов

Ниже рассмотрим несколько примеров нахождения неопределенных интегралов. Предлагаем самостоятельно разобраться в тонкостях решения, а если что-то непонятно, задавайте вопросы в комментариях.


Для закрепления материала посмотрите видео о том, как решаются интегралы на практике. Не отчаиваетесь, если интеграл не дается сразу. Обратитесь в профессиональный сервис для студентов, и любой тройной или криволинейный интеграл по замкнутой поверхности станет вам по силам.

Понятие первообразной. Таблица первообразных. Правила нахождения первообразных. МБОУ г. Мурманска гимназия 3 Шахова Татьяна Александровна http://aida.ucoz.ru


Http://aida.ucoz.ru Необходимо знать и уметь: -знать и уметь использовать формулы и правила дифференцирования; - уметь выполнять преобразования алгебраических и тригонометрических выражений.


Формулы дифференцирования Правила дифференцирования Назад


Http://aida.ucoz.ru Функция F(x)называется первообразной для функции f(x)на некотором промежутке, если для всех x из этого промежутка Воспользуемся определением 1) Задача 1. Докажите, что функция F(x) является первообразной для функции f(x). Найдем F"(x) Если Формулы и правила дифференцирования


Http://aida.ucoz.ru Функция F(x)называется первообразной для функции f(x)на некотором промежутке, если для всех x из этого промежутка 2)2) Задача 1. Докажите, что функция F(x) является первообразной для функции f(x). Формулы и правила дифференцирования


Http://aida.ucoz.ru Функция F(x)называется первообразной для функции f(x)на некотором промежутке, если для всех x из этого промежутка 3)3) Задача 1. Докажите, что функция F(x) является первообразной для функции f(x). Формулы и правила дифференцирования


Http://aida.ucoz.ru Функция F(x)называется первообразной для функции f(x)на некотором промежутке, если для всех x из этого промежутка Задача 1. Докажите, что функция F(x) является первообразной для функции f(x). 4)4) Формулы и правила дифференцирования


Http://aida.ucoz.ru Функция F(x)называется первообразной для функции f(x)на некотором промежутке, если для всех x из этого промежутка Задача 1. Докажите, что функция F(x) является первообразной для функции f(x). 5)5) Формулы и правила дифференцирования


Http://aida.ucoz.ru Функция F(x)называется первообразной для функции f(x)на некотором промежутке, если для всех x из этого промежутка Задача 1. Докажите, что функция F(x) является первообразной для функции f(x). 6)6) Формулы и правила дифференцирования


10 Функция F(x)называется первообразной для функции f(x)на некотором промежутке, если для всех x из этого промежутка Формулы и правила дифференцирования Воспользовавшись формулами дифференцирования и определением первообразной можно легко составить таблицу первообразных для некоторых функций. Убедитесь в правильности составленной таблицы. Найдите F"(x).


11 Функция F(x)называется первообразной для функции f(x)на некотором промежутке, если для всех x из этого промежутка Воспользовавшись формулами дифференцирования и определением первообразной можно легко составить таблицу первообразных для некоторых функций. Назад




3) Если F(x) – первообразная для функции f(x), а k и b- константы, причем k0, то - первообразная для функции 2) Если F(x)– первообразная для функции f(x), а а –константа, то аF(x)– первообразная для функции аf(x) http://aida.ucoz.ru Для нахождения первообразных нам понадобятся кроме таблицы правила нахождения первообразных. 1) Если F(x)– первообразная для функции f(x), а G(x)– первообразная для функции g(x), то F(x)+G(x)– первообразная для функции f(x)+g(x). Первообразная суммы равна сумме первообразных Постоянный множитель можно выносить за знак первообразной Назад


Http://aida.ucoz.ru Задача 2. Дана функция f(x). Найдите ее первообразную, воспользовавшись таблицей первообразных и правилами нахождения первообразной и выполните проверку, воспользовавшись определением (задача 1) В таблице такой функции нет. 1) Проверка: Преобразуем f(x): Таблица первообразных Формулы и правила дифференцирования Используем таблицу и второе правило. Правила Табличная функция Коэффициент


Http://aida.ucoz.ru Задача 2. Дана функция f(x). Найдите ее первообразную, воспользовавшись таблицей первообразных и правилами нахождения первообразной и выполните проверку, воспользовавшись определением (задача 1) В таблице такой функции нет. 2)2) Проверка: Преобразуем f(x): Формулы и правила дифференцирования Используем таблицу и второе правило. Табличная функция Коэффициент Таблица первообразных Правила


Http://aida.ucoz.ru Задача 2. Дана функция f(x). Найдите ее первообразную, воспользовавшись таблицей первообразных и правилами нахождения первообразной и выполните проверку, воспользовавшись определением (задача 1) 3)3) Проверка: Формулы и правила дифференцирования Используем таблицу и первое правило. Табличная функция Таблица первообразных Правила


Http://aida.ucoz.ru Задача 2. Дана функция f(x). Найдите ее первообразную, воспользовавшись таблицей первообразных и правилами нахождения первообразной и выполните проверку, воспользовавшись определением (задача 1) 4)4) Проверка: Формулы и правила дифференцирования Используем таблицу, первое и второе правило. Табличная функция Коэффициент Таблица первообразных Правила


Http://aida.ucoz.ru Задача 2. Дана функция f(x). Найдите ее первообразную, воспользовавшись таблицей первообразных и правилами нахождения первообразной и выполните проверку, воспользовавшись определением (задача 1) В таблице таких функций нет. 5)5) Проверка: Преобразуем f(x): Формулы и правила дифференцирования Используем таблицу, первое и второе правило. Табличная функция Коэффициент Табличная функция Таблица первообразных Правила Коэффициент


Http://aida.ucoz.ru Задача 2. Дана функция f(x). Найдите ее первообразную, воспользовавшись таблицей первообразных и правилами нахождения первообразной и выполните проверку, воспользовавшись определением (задача 1) 6)6) Проверка: Формулы и правила дифференцирования Синус – табличная функция. Табличная функция Аргумент – линейная функция Используем таблицу и третье правило. Таблица первообразных Правила (k=3).


Задача 2. Дана функция f(x). Найдите ее первообразную, воспользовавшись таблицей первообразных и правилами нахождения первообразной и выполните проверку, воспользовавшись определением (задача 1) 7)7) Формулы и правила дифференцирования В таблице такой функции нет. Преобразуем f(x): Линейная функция Коэффициент Используем таблицу, первое и третье правило. Таблица первообразных Правила табличная функция


Задача 2. Дана функция f(x). Найдите ее первообразную, воспользовавшись таблицей первообразных и правилами нахождения первообразной и выполните проверку, воспользовавшись определением (задача 1) 7)7) Формулы и правила дифференцирования Проверка: Таблица первообразных Правила


Задача 2. Дана функция f(x). Найдите ее первообразную, воспользовавшись таблицей первообразных и правилами нахождения первообразной и выполните проверку, воспользовавшись определением (задача 1) 8)8) Формулы и правила дифференцирования В таблице такой функции нет. Преобразуем f(x): Линейная функция Коэффициент Используем первое и третье правило. Таблица первообразных Правила табличная функция


Задача 2. Дана функция f(x). Найдите ее первообразную, воспользовавшись таблицей первообразных и правилами нахождения первообразной и выполните проверку, воспользовавшись определением (задача 1) 8)8) Формулы и правила дифференцирования Проверка: Таблица первообразных Правила


Http://aida.ucoz.ru Задача 2. Дана функция f(x). Найдите ее первообразную, воспользовавшись таблицей первообразных и правилами нахождения первообразной и выполните проверку, воспользовавшись определением (задача 1) 9)9) Проверка: Формулы и правила дифференцирования В таблице таких функций нет. Коэффициент Преобразуем f(x): Используем таблицу и второе правило: Таблица первообразных Правила Табличная функция


Http://aida.ucoz.ru Задача 2. Дана функция f(x). Найдите ее первообразную, воспользовавшись таблицей первообразных и правилами нахождения первообразной и выполните проверку, воспользовавшись определением (задача 1) 9)9) Формулы и правила дифференцирования В таблице такой функции нет. Преобразуем f(x), воспользуемся формулой понижения степени: Табличная функция Используем таблицу и все три правила: Табличная функция Коэффициент Таблица первообразных Правила Линейная функция


Http://aida.ucoz.ru Задача 2. Дана функция f(x). Найдите ее первообразную, воспользовавшись таблицей первообразных и правилами нахождения первообразной и выполните проверку, воспользовавшись определением (задача 1) 9)9) Проверка: Формулы и правила дифференцирования Таблица первообразных Правила


Http://aida.ucoz.ru Для тренировки используй аналогичные упражнения задачника.

Конспект урока по алгебре и началам анализа для учащихся 11 класса средних общеобразовательных учреждений

На тему: «Правила нахождения первообразных»

Цель урока:

Образовательная: ввести правила нахождения первообразных с помощью их табличных значений и использовать их при решении задач.

Задачи:

    ввести определение операции интегрирования;

    познакомить учащихся с таблицей первообразных;

    познакомить учащихся с правилами интегрирования;

    научить учащихся применять таблицу первообразных и правила интегрирования при решении задач.

Развивающая: способствовать развитию у учащихся умения анализировать, сопоставлять данные, делать выводы.

Воспитательная: способствовать формированию навыков коллективной и самостоятельной работы, формировать умения аккуратно и грамотно выполнять математические записи.

Методы обучения: индуктивно-репродуктивный, дедуктивно-репродук-

тивный.

Тип урока: усвоение новых знаний.

Требования к ЗУН:

Учащиеся должны знать:

- определение операции интегрирования;

Таблицу первообразных;

учащиеся должны уметь:

Применять таблицу первообразных при решении задач;

Решать задачи, в которых необходимо находить первообразные.

Оборудование: компьютер, экран, мультимедиа проектор, презентация.

Литература:

1. А.Г. Мордкович и др. «Алгебра и начала анализа. Задачник для 10-11 класса» М.: Мнемозина, 2001.

2. Ш.А. Алимов «Алгебра и начала анализа. 10-11 класс. Учебник» М.: Просвещение, 2004. - 384с.

3. Методика и технология обучения математике. М.: Дрофа, 2005. – 416 с.

Структура урока:

I . Организационный момент (2 мин.)

II . Актуализация знаний (7 мин.)

III . Изучение нового материала (15 мин.)

VI . Закрепление изученного материала (17 мин.)

V . Подведение итогов и Д/З (4 мин.)

Ход урока

I . Организационный момент

Приветствие учащихся, проверка отсутствующих и готовности помещения к уроку.

II . Актуализация знаний

Запись на доске (в тетрадях)

Дата.

Классная работа

Правила нахождения первообразных.

Учитель: Тема сегодняшнего урока: «Правила нахождения первообразных» (слайд 1). Но прежде, чем перейти к изучению новой темы вспомним пройденный материал.

К доске вызываются двое учеников, каждому дается индивидуальное задание (если ученик справился с заданием без ошибок, то он получает отметку «5»).

Карточки с заданиями

№ 1

у = 6х – 2х 3 .

f ( x )=3 x 2 +4 x –1 в точке x =3.

№ 2

2) Найдите значение производной функции f ( x )=5 x 2 +5 x 5 в точке x =1.

Решение

Карточка № 1

1) Найти интервалы возрастания и убывания функции у = 6х – 2х 3 .

; Пусть , тогда , сдедовательно ; х 1 и х 2 стационарные точки;

2. Стационарные точки разбивают координатную прямую на три интервала. В тех интервалах, где производная функции положительна сама функция возрастает, где отрицательна – убывает.

- + -

у -1 1

Следовательно у убывает при х (- ;-1) (1; ) и возрастает при х (-1;1).

2) f ( x )=3 x 2 +4 x –1 ; ; .

Карточка № 2

1) Найти точки экстремума функции .

1. Найдем стационарные точки, для этого найдем производную данной функции, затем приравняем её к нулю и решим полученное уравнение, корнями которого и будут являться стационарные точки.

; Пусть , тогда , следовательно, , и .

2. Стационарные точки разбивают координатную прямую на четыре интервала. Те точки, при переходе через которые производная функции меняет знак, являются точками экстремума.

+ - - +

у -3 0 3

Значит - точки экстремума, причем - точка максимума, а - точка минимума.

2) f ( x )=5 x 2 +5 x 5; ; .

Пока, вызванные к доске ученики решают примеры остальному классу задаются теоретические вопросы. В процессе опроса учитель следит, справились ученики с заданием или нет.

Учитель: Итак, давайте ответим на несколько вопросов. Вспомним, какая функция называется первообразной? (слайд 2)

Ученик: Функция F ( x ) называется первообразной функции f ( x ) на некотором промежутке, если для всех x из этого промежутка .

(слайд 2).

Учитель: Верно. А как называется процесс нахождения производной функции? (слайд 3)

Ученик: Дифференцированием.

После ответа учащегося, правильный ответ дублируется на слайде (слайд 3).

Учитель: Каким образом показать, что функция F ( x ) является первообразной для функции f ( x ) ? (слайд 4).

Ученик: Найти производную функции F ( x ) .

После ответа учащегося, правильный ответ дублируется на слайде (слайд 4).

Учитель: Хорошо. Тогда скажите, является ли функция F ( x )=3 x 2 +11 x первообразной для функции f ( x )=6х+10 ? (слайд 5)

Ученик: Нет, т.к. производная функции F ( x )=3 x 2 +11 x равна 6х+11 , а не 6х+10 .

После ответа учащегося, правильный ответ дублируется на слайде (слайд 5).

Учитель: Какое количество первообразных можно найти для некоторой функции f ( x ) ? Ответ обоснуйте. (слайд 6)

Ученик: Бесконечно много, т.к. к полученной функции мы всегда прибавляем константу, которая может быть любым вещественным числом.

После ответа учащегося, правильный ответ дублируется на слайде (слайд 6).

Учитель: Верно. Сейчас давайте вместе проверим решение учеников работавших у доски.

Ученики совместно с учителем проверяют решение.

III . Изучение нового материала

Учитель: Обратную операцию нахождения первообразной для данной функции называют интегрированием (от латинского слова integrare – восстанавливать). Таблицу первообразных для некоторых функций можно составить, используя таблицу производных. Например, зная, что , получаем , откуда следует, что все первообразные функции записываются в виде , где C – произвольная постоянная.

Запись на доске (в тетрадях)

получаем ,

откуда следует, что все первообразные функции записываются в виде , где C – произвольная постоянная.

Учитель: Откройте учебники на странице 290. Здесь приведена таблица первообразных. Также она представлена на слайде. (слайд 7)

Учитель: Правила интегрирования можно получить с помощью правил дифференцирования. Рассмотрим следующие правила интегрирования: пусть F ( x ) и G ( x ) – первообразные соответственно функций f ( x ) и g ( x ) на некотором промежутке. Тогда:

1) Функция ;

2) Функция является первообразной функции . (слайд 8)

Запись на доске (в тетрадях)

1) Функция является первообразной функции ;

2) Функция является первообразной функции .

VI . Закрепление изученного материала

Учитель: Переходим к практической части урока. Найти одну из первообразных функции Решаем у доски.

Ученик: Чтобы найти первообразную данной функции нужно использовать правило интегрирования: функция является первообразной функции .

Учитель: Верно, что еще необходимо знать для нахождения первообразной данной функции?

Ученик: Также будем использовать таблицу первообразных для функций , при p =2 и для является функция ;

2) Функция является первообразной функции .

Учитель: Все правильно.

Домашнее задание

§55, № 988 (2, 4, 6), № 989 (2, 4, 6, 8), № 990 (2, 4, 6), № 991 (2, 4, 6, 8). (слайд 9)

Выставление отметок.

Учитель: Урок окончен. Можете быть свободны.

Мы убедились в том, что производная имеет многочисленные применения: производная - это скорость движения (или, обобщая, скорость протекания любого процесса); производная - это угловой коэффициент касательной к графику функции; с помощью производной можно исследовать функцию на монотонность и экстремумы; производная помогает решать задачи на оптимизацию.

Но в реальной жизни приходится решать и обратные задачи: например, наряду с задачей об отыскании скорости по известному закону движения встречается и задача о восстановлении закона движения по известной скорости. Рассмотрим одну из таких задач.

Пример 1. По прямой движется материальная точка, скорость ее движения в момент времени t задается формулой u = tg. Найти закон движения.

Решение. Пусть s = s(t) - искомый закон движения. Известно, что s"(t) = u"(t). Значит, для решения задачи нужно подобрать функцию s = s(t), производная которой равна tg. Нетрудно догадаться, что

Сразу заметим, что пример решен верно, но неполно. Мы получили, что На самом деле, задача имеет бесконечно много решений: любая функция вида произвольная константа, может служить законом движения, поскольку


Чтобы задача стала более определенной, нам надо было зафиксировать исходную ситуацию: указать координату движущейся точки в какой-либо момент времени, например, при t=0. Если, скажем, s(0) = s 0 , то из равенства получаем s(0) = 0+С, т.е.S 0 = С. Теперь закон движения определен однозначно:
В математике взаимно обратным операциям присваивают разные названия, придумывают специальные обозначения: например, возведение в квадрат (х 2) и извлечение квадратного корня синус(sinх) и арксинус (аrcsin х) и т.д. Процесс отыскания производной по заданной функции называют дифференцированием, а обратную операцию, т.е. процесс отыскания функции по заданной производной - интегрированием.
Сам термин «производная» можно обосновать «по-житейски»: функция у - f(х) «производит на свет» новую функцию у"= f"(x) Функция у = f(х) выступает как бы в качестве «родителя», но математики, естественно, не называют ее «родителем» или «производителем», они говорят, что это, по отношению к функции у"=f"(х), первичный образ, или, короче, первообразная.

Определение 1. Функцию у = F(х) называют первообразной для функции у = f(х) на заданном промежутке X, если для всех х из X выполняется равенство F"(х)=f(х).

На практике промежуток X обычно не указывают, но подразумевают (в качестве естественной области определения функции).

Приведем примеры:

1) Функция у = х 2 является первообразной для функции у = 2х, поскольку для всех х справедливо равенство (х 2)" =2х.
2) функция у - х 3 является первообразной для функции у-Зх 2 , поскольку для всех х справедливо равенство (х 3)" = Зх 2 .
3) Функция у-sinх является первообразной для функции у=соsх, поскольку для всех х справедливо равенство (sinх)" =соsх.
4) Функция являетя первообразной для функции на промежутке поскольку для всех х > 0 справедливо равенство
Вообще, зная формулы для отыскания производных, нетрудно составить таблицу формул для отыскания первообразных.


Надеемся, вы поняли, как составлена эта таблица: производная функции, которая записана во втором столбце, равна той функции, которая записана в соответствующей строке первого столбца (проверьте, не поленитесь, это очень полезно). Например, для функции у = х 5 первообразной, как вы установите, служит функция (см. четвертую строку таблицы).

Замечания: 1. Ниже мы докажем теорему о том, что если у = F(х) - первообразная для функции у = f(х), то у функции у = f(х)бесконечно много первообразных и все они имеют вид у = F(х) + С. Поэтому правильней было бы во втором столбце таблицы всюду добавить слагаемое С, где С - произвольное действительное число.
2. Ради краткости иногда вместо фразы «функция у = F(х) является первообразной для функции y = f(x)», говорят F(х) - первообразная для f(x)».

2. Правила отыскания первообразных

При отыскании первообразных, как и при отыскании производных, используются не только формулы (они указаны в таблице на с. 196), но и некоторые правила. Они непосредственно связаны с соответствующими правилами вычисления производных.

Мы знаем, что производная суммы равна сумме производных. Это правило порождает соответствующее правило отыскания первообразных.

Правило 1. Первообразная суммы равна сумме первообразных.

Обращаем ваше внимание на некоторую «легковесность» этой формулировки. На самом деле следовало бы сформулировать теорему: если функции у = f(х) и у=g{х) имеют на промежутке X первообразные, соответственно у-F(х) и у-G(х), то и сумма функций у = f(х)+g(х) имеет на промежутке X первообразную, причем этой первообразной является функция у = F(х)+G(х). Но обычно, формулируя правила (а не теоремы), оставляют только ключевые слова - так удобнее для применения правила на практике

Пример 2. Найти первообразную для функции у = 2х + соз х.

Решение. Первообразной для 2х служит х"; первообразной для созх служит sin х. Значит, первообразной для функции у=2х + соз х будет служить функция у = х 2 + sin х (и вообще любая функция вида У = х 1 + sinх + С).
Мы знаем, что постоянный множитель можно вынести за знак производной. Это правило порождает соответствующее правило отыскания первообразных.

Правило 2. Постоянный множитель можно вынести за знак первообразной.

Пример 3.

Ре ш е н и е. а) Первообразной для sin х служит -соз х; значит, для функции у = 5 sin х первообразной будет функция у = -5соз х.

б) Первообразной для соз x служит sin x; значит, для функции первообразной будет функция
в) Первообразной для х 3 служит первообразной для х служит первообразной для функции у = 1 служит функция у = х. Используя первое и второе правила отыскания первообразных, получим, что первообразной для функции у = 12х 3 + 8х-1 служит функция
Замечание. Как известно, производная произведения не равна произведению производных (правило дифференцирования произведения более сложное) и производная частного не равна частному от производных. Поэтому нет и правил для отыскания первообразной от произведения или первообразной от частного двух функций. Будьте внимательны!
Получим еще одно правило отыскания первообразных. Мы знаем, что производная функции у = f(кх+m) вычисляется по формуле

Это правило порождает соответствующее правило отыскания первообразных.
Правило 3. Если у = F(х) - первообразная для функции у = f(х), то первообразной для функции у=f(кх+m) служит функция

В самом деле,


Это и означает, что является первообразной для функции у = f(кх+m).
Смысл третьего правила заключается в следующем. Если вы знаете, что первообразной для функции у = f(х) является функция у = F(х),а.вам нужно найти первообразную функции у = f(кх+m), то действуйте так: берите ту же самую функцию F, но вместо аргумента х подставьте выражение кх+m; кроме того, не забудьте перед знаком функции записать «поправочный множитель»
Пример 4. Найти первообразные для заданных функций:

Решение , а) Первообразной для sin х служит -соз х; значит, для функции у = sin2х первообразной будет функция
б) Первообразной для соз х служит sin х; значит, для функции первообразной будет функция

в) Первообразной для х 7 служит значит, для функции у=(4-5х) 7 первообразной будет функция

3. Неопределенный интеграл

Выше мы уже отмечали, что задача отыскания первообразной для заданной функции у = f(х)имеет не одно решение. Обсудим этот вопрос более детально.

Доказательство. 1. Пусть у = F(х) - первообразная для функции у = f(х) на промежутке X. Это значит, что для всех х из X выполняется равенство x"(х) = f(х). Найдем производную любой функции вида у = F(х)+С:
(F(х) +С) = F"(х) +С = f(x) +0 = f(x).

Итак, (F(х)+С) = f(х). Это значит, что у = F(х) +С является первообразной для функции у = f(х).
Таким образом, мы доказали, что если у функции у = f(х) есть первообразная у=F(х), то у функции {f = f(x) бесконечно много первообразных, например, любая функция вида у = F(х)+С является первообразной.
2. Докажем теперь, что указанным видом функций исчерпывается все множество первообразных.

Пусть у=F 1 (х) и у=F(х) - две первообразные для функции У = f(x)на промежутке X. Это значит, что для всех х из промежутка X выполняются соотношения: F^ (х) = f(х); F"(х) = f(х).

Рaсмотрим функцию у = F 1 (х) -.F(х) и найдем ее производную: (F, (х) -F(х))" = F[(х)-F(х) = f(х) - f(х) = 0.
Известно, что если производная функции на промежутке X тождественно равна нулю, то функция постоянна на промежутке X (см. теорему 3 из § 35). Значит, F 1 (х)-F(х) =С, т.е. Fх) = F(х)+С.

Теорема доказана.

Пример 5. Задан закон изменения скорости от времени v = -5sin2t. Найти закон движения s = s(t), если известно, что в момент времени t=0 координата точки равнялась числу 1,5 (т.е. s(t) = 1,5).

Решение. Так как скорость - производная координаты как функции от времени, то нам прежде всего нужно найти первообразную от скорости, т.е. первообразную для функции v = -5sin2t. Одной из таких первообразных является функция , а множество всех первообразных имеет вид:

Чтобы найти конкретное значение постоянной С, воспользуемся начальными условиями, согласно которым, s(0) = 1,5. Подставив в формулу (1) значения t=0, S = 1,5, получим:

Подставив найденное значение С в формулу (1), получим интересующий нас закон движения:

Определение 2. Если функция у = f(х) имеет на промежутке X первообразную у = F(х), то множество всех первообразных, т.е. множество функций вида у = F(х) + С, называют неопределенным интегралом от функции у = f(x) и обозначают:

(читают: «неопределенный интеграл эф от икс дэ икс»).
В следующем параграфе мы выясним, в чем состоит скрытый смысл указанного обозначения.
Опираясь на имеющуюся в этом параграфе таблицу первообразных, составим таблицу основных неопределенных интегралов:

Опираясь на приведенные выше три правила отыскания первообразных, мы можем сформулировать соответствующие правила интегрирования.

Правило 1. Интеграл от суммы функций равен сумме интегралов этих функций:

Правило 2. Постоянный множитель можно вынести за знак интеграла:

Правило 3. Если

Пример 6. Найти неопределенные интегралы:

Решение , а) Воспользовавшись первым и вторым правилами интегрирования, получим:


Теперь воспользуемся 3-й и 4-й формулами интегрирования:

В итоге получаем:

б) Воспользовавшись третьим правилом интегрирования и формулой 8, получим:


в) Для непосредственного нахождения заданного интеграла у нас нет ни соответствующей формулы, ни соответствующего правила. В подобных случаях иногда помогают предварительно выполненные тождественные преобразования выражения, содержащегося под знаком интеграла.

Воспользуемся тригонометрической формулой понижения степени:

Тогда последовательно находим:

А.Г. Мордкович Алгебра 10 класс

Календарно-тематическое планирование по математике, видео по математике онлайн , Математика в школе



Что еще почитать