Перечислить элементы множества. Обозначение, запись и изображение числовых множеств. Элементы логической символики

страница 1

9-10 классы

Модуль 1: Основы теории множеств


. . .
Задание 1.

А) Объясните, из каких элементов состоят множества N , Z , Q , R .

Б) Назовите несколько чисел, являющихся элементами для каждого множества.

В) Назовите числа, которые являются элементами одного из множеств, и не являются элементами остальных трех.

Г) Нарисуйте диаграмму, показывающую взаимосвязь этих множеств между собой.

Ответ.

В) Такие элементы есть только во множестве R . Например,  R , но N , Z , Q . Элементы любого из множеств N , Z , Q обязательно входят и в множество R .

Г

N множество натуральных чисел;
Z множество целых чисел;
Q множество рациональных чисел;

R множество действительных чисел.
Учителю. Рассматривая материал, мы не выходим за множество действительных чисел.
Задание 2. Задайте множество:

А) учителей математики Вашей школы;

Б) нечетных чисел;

В) корней уравнения х 2 + 5 = 0;

Г) решений неравенства х > 4;

Ответ: Б) {х х = 2n - 1; n Z };


Г) (4; +).

Учителю. При необходимости можно повторить запись числовых множеств решений неравенств разного вида (приложение «Таблица»).
Равные множества. Множества, состоящие из одних и тех же элементов, считают равными.

Например, А = {1, 2, 3 }; В ={ х (х - 1)(х - 2)(х - 3) = 0 }. А = В.

Отношение равенства для множеств, как и отношение равенства для чисел, обладает свойствами рефлексивности, симметричности и транзитивности.


  • А = А (рефлексивность);

  • Если А = В, то В = А (симметричность);

  • Если А = В и В = С, то А = С (транзитивность).

Мощность множества. Для множества, имеющего конечное число элементов, мощностью называется количество его элементов.

А = {а; b ; c ; d }. Его мощность: А = 4.

Если два множества имеют одинаковую мощность, говорят, что они равномощны. Множество А равномощно множеству времен года.


Интересно, что сначала человек научился сравнивать множества по количеству элементов, а позднее – считать предметы. Сравнить два множества по количеству элементов можно так: каждому элементу одного множества ставить в соответствие элемент второго. Если все элементы «встанут» по парам, то множества равномощны. Если же при сопоставлении некоторые элементы одного из множеств останутся без пары, то оно содержит больше элементов.

Все конечные множества можно мысленно рассортировать, относя в один и тот же класс все множества с одинаковым количеством элементов. И каждому классу поставить в соответствие как характеристику этого множества некоторое число. Таким образом, натуральное число 1 - это общая характеристика всех множеств, имеющих один элемент, натуральное число 5 - это общая характеристика всех множеств, имеющих пять элементов.

Взаимно-однозначное соответствие можно установить и для бесконечных множеств. Например, запишем в один ряд все натуральные числа, а в другой – все четные, элемент под элементом.

1 2 3 4 5 6 7 8 9 10 11 12 . . .

2 4 6 8 10 12 14 16 18 20 22 24 . . .
Мы видим, что все числа первого множества имеют однозначно определенную пару во втором множестве и наоборот. То есть множество натуральных чисел имеет столько же элементов, сколько и множество натуральных четных. То есть они равномощны.

Множества, равномощные множеству натуральных чисел N, называются счетными. Интересно, что счетным является, например, множество положительных рациональных чисел.

Мощность множества всех действительных чисел называется мощностью континуума. Мощность континуум имеют также все множества, равномощные интервалу (0,1). Таким образом, множество всех действительных чисел равномощно интервалу (0,1).
Отношение равномощности также обладает свойствами рефлексивности, симметричности и транзитивности.

То есть, для любых множеств А и В справедливо:


  • А = А

  • Если А = В, то В = А;

  • Если А = В и В = С, то А = С .

Задание 3 . Найдите мощность множеств:

А) Т - множество трехзначных натуральных чисел;

Б) К – множество граней куба;

В) Р – множество натуральных чисел, кратных 7.

Г) Приведите примеры множеств, равномощных каждому из п. А-В.

Ответ: А) Т= 900; Б) К= 6; В) множество К – счетное.
Учителю . Проговорите с учащимися о различии понятий равенство множеств и равномощность множеств.

Задание 4. А – множество букв слова «КОЛЬЦО», В – множество букв слова «ЦОКОЛЬ», С -

множество букв слова «УЛИЦА». Укажите равные и равномощные множества.


Ответ: А = {К, О, Л, Ь, Ц}, В = {Ц, О, К, Л, Ь}, С = {У, Л, И, Ц, А}. Мощность всех трех множеств равна 5, значит, они равномощны.

Материалы разработаны методистами Новосибирского центра продуктивного обучения


страница 1


Из огромного многообразия всевозможных множеств особый интерес представляют так называемые числовые множества , то есть, множества, элементами которых являются числа. Понятно, что для комфортной работы с ними нужно уметь их записывать. С обозначений и принципов записи числовых множеств мы и начнем эту статью. А дальше рассмотрим, как числовые множества изображаются на координатной прямой.

Навигация по странице.

Запись числовых множеств

Начнем с принятых обозначений. Как известно, для обозначения множеств используются заглавные буквы латинского алфавита. Числовые множества, как частный случай множеств, обозначаются также. Например, можно говорить о числовых множествах A , H , W и т.п. Особую важность имеют множества натуральных, целых, рациональных, действительных, комплексных чисел и т.п., для них были приняты свои обозначения:

  • N – множество всех натуральных чисел;
  • Z – множество целых чисел;
  • Q – множество рациональных чисел;
  • J – множество иррациональных чисел;
  • R – множество действительных чисел;
  • C – множество комплексных чисел.

Отсюда понятно, что не стоит обозначать множество, состоящее, к примеру, из двух чисел 5 и −7 как Q , это обозначение будет вводить в заблуждение, так как буквой Q обычно обозначают множество всех рациональных чисел. Для обозначения указанного числового множества лучше использовать какую-нибудь другую «нейтральную» букву, например, A .

Раз уж мы заговорили про обозначения, то здесь напомним и про обозначение пустого множества, то есть множества, не содержащего элементов. Его обозначают знаком ∅.

Также напомним про обозначение принадлежности и непринадлежности элемента множеству. Для этого используют знаки ∈ - принадлежит и ∉ - не принадлежит. Например, запись 5∈N означает, что число 5 принадлежит множеству натуральных чисел, а 5,7∉Z – десятичная дробь 5,7 не принадлежит множеству целых чисел.

И еще напомним про обозначения, принятые для включения одного множества в другое. Понятно, что все элементы множества N входят в множество Z , таким образом, числовое множество N включено в Z , это обозначается как N⊂Z . Также можно использовать запись Z⊃N , которая означает, что множество всех целых чисел Z включает множество N . Отношения не включено и не включает обозначаются соответственно знаками ⊄ и ⊅. Также используются знаки нестрогого включения вида ⊆ и ⊇, означающие соответственно включено или совпадает и включает или совпадает.

Про обозначения поговорили, переходим к описанию числовых множеств. При этом затронем лишь основные случаи, которые наиболее часто используются на практике.

Начнем с числовых множеств, содержащих конечное и небольшое количество элементов. Числовые множества, состоящие из конечного числа элементов, удобно описывать, перечисляя все их элементы. Все элементы-числа записываются через запятую и заключаются в , что согласуется с общими правилами описания множеств . Например, множество, состоящее из трех чисел 0 , −0,25 и 4/7 можно описать как {0, −0,25, 4/7} .

Иногда, когда число элементов числового множества достаточно велико, но элементы подчиняются некоторой закономерности, для описания используют многоточие. Например, множество всех нечетных чисел от 3 до 99 включительно можно записать как {3, 5, 7, …, 99} .

Так мы плавно подошли к описанию числовых множеств, число элементов которых бесконечно. Иногда их можно описать, используя все тоже многоточие. Для примера опишем множество всех натуральных чисел: N={1, 2. 3, …} .

Также пользуются описанием числовых множеств посредством указания свойств его элементов. При этом применяют обозначение {x| свойства} . Например, запись {n| 8·n+3, n∈N} задает множество таких натуральных чисел, которые при делении на 8 дают остаток 3 . Это же множество можно описать как {11,19, 27, …} .

В частных случаях числовые множества с бесконечным числом элементов представляют собой известные множества N , Z , R , и т.п. или числовые промежутки. А в основном числовые множества представляются как объединение составляющих их отдельных числовых промежутков и числовых множеств с конечным числом элементов (о которых мы говорили чуть выше).

Покажем пример. Пусть числовое множество составляют числа −10 , −9 , −8,56 , 0 , все числа отрезка [−5, −1,3] и числа открытого числового луча (7, +∞) . В силу определения объединения множеств указанное числовое множество можно записать как {−10, −9, −8,56}∪[−5, −1,3]∪{0}∪(7, +∞) . Такая запись фактически означает множество, содержащее в себе все элементы множеств {−10, −9, −8,56, 0} , [−5, −1,3] и (7, +∞) .

Аналогично, объединяя различные числовые промежутки и множества отдельных чисел, можно описать любое числовое множество (состоящее из действительных чисел). Здесь становится понятно, почему были введены такие виды числовых промежутков как интервал, полуинтервал, отрезок, открытый числовой луч и числовой луч: все они в купе с обозначениями множеств отдельных чисел позволяют описывать любые числовых множества через их объединение.

Обратите внимание, что при записи числового множества составляющие его числа и числовые промежутки упорядочиваются по возрастанию. Это не обязательное, но желательное условие, так как упорядоченное числовое множество проще представить и изобразить на координатной прямой. Также отметим, что в подобных записях не используются числовые промежутки с общими элементами, так как такие записи можно заменить объединением числовых промежутков без общих элементов. Например, объединение числовых множеств с общими элементами [−10, 0] и (−5, 3) есть полуинтервал [−10, 3) . Это же относится и к объединению числовых промежутков с одинаковыми граничными числами, например, объединение (3, 5]∪(5, 7] представляет собой множество (3, 7] , на этом мы отдельно остановимся, когда будем учиться находить пересечение и объединение числовых множеств .

Изображение числовых множеств на координатной прямой

На практике удобно пользоваться геометрическими образами числовых множеств – их изображениями на . Например, при решении неравенств , в которых необходимо учитывать ОДЗ, приходится изображать числовые множества, чтобы найти их пересечение и/или объединение. Так что полезно будет хорошо разобраться со всеми нюансами изображения числовых множеств на координатной прямой.

Известно, что между точками координатной прямой и действительными числами существует взаимно однозначное соответствие, что означает, что сама координатная прямая представляет собой геометрическую модель множества всех действительных чисел R . Таким образом, чтобы изобразить множество всех действительных чисел, надо начертить координатную прямую со штриховкой на всем ее протяжении:

А часто даже не указывают начало отсчета и единичный отрезок:

Теперь поговорим про изображение числовых множеств, представляющих собой некоторое конечное число отдельных чисел. Для примера, изобразим числовое множество {−2, −0,5, 1,2} . Геометрическим образом данного множества, состоящего из трех чисел −2 , −0,5 и 1,2 будут три точки координатной прямой с соответствующими координатами:

Отметим, что обычно для нужд практики нет необходимости выполнять чертеж точно. Часто достаточно схематического чертежа, что подразумевает необязательное выдерживание масштаба, при этом важно лишь сохранять взаимное расположение точек относительно друг друга: любая точка с меньшей координатой должна быть левее точки с большей координатой. Предыдущий чертеж схематически будет выглядеть так:

Отдельно из всевозможных числовых множеств выделяют числовые промежутки (интервалы, полуинтервалы, лучи и т.д.), что представляют их геометрические образы, мы подробно разобрались в разделе . Здесь не будем повторяться.

И остается остановиться лишь на изображении числовых множеств, представляющих собой объединение нескольких числовых промежутков и множеств, состоящих из отдельных чисел. Здесь нет ничего хитрого: по смыслу объединения в этих случаях на координатной прямой нужно изобразить все составляющие множества данного числового множества. В качестве примера покажем изображение числового множества (−∞, −15)∪{−10}∪[−3,1)∪ {log 2 5, 5}∪(17, +∞) :

И остановимся еще на достаточно распространенных случаях, когда изображаемое числовое множество представляет собой все множество действительных чисел, за исключением одной или нескольких точек. Такие множества частенько задаются условиями типа x≠5 или x≠−1 , x≠2 , x≠3,7 и т.п. В этих случаях геометрически они представляют собой всю координатную прямую, за исключением соответствующих точек. Иными словами, из координатной прямой нужно «выколоть» эти точки. Их изображают кружочками с пустым центром. Для наглядности изобразим числовое множество, соответствующее условиям (это множество по сути есть ):

Подведем итог. В идеале информация предыдущих пунктов должна сформировать такой же взгляд на запись и изображение числовых множеств, как и взгляд на отдельные числовые промежутки: запись числового множества сразу должна давать его образ на координатной прямой, а по изображению на координатной прямой мы должны быть готовы с легкостью описать соответствующее числовое множество через объединение отдельных промежутков и множеств, состоящих из отдельных чисел.

Список литературы.

  • Алгебра: учеб. для 8 кл. общеобразоват. учреждений / [Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова]; под ред. С. А. Теляковского. - 16-е изд. - М. : Просвещение, 2008. - 271 с. : ил. - ISBN 978-5-09-019243-9.
  • Мордкович А. Г. Алгебра. 9 класс. В 2 ч. Ч. 1. Учебник для учащихся общеобразовательных учреждений / А. Г. Мордкович, П. В. Семенов. - 13-е изд., стер. - М.: Мнемозина, 2011. - 222 с.: ил. ISBN 978-5-346-01752-3.

I. Множество представляет собой совокупность некоторых предметов или чисел, составленных по каким-либо общим свойствам или законам (множество букв на странице, множество правильных дробей со знаменателем 5 , множество звезд на небе и т.д.).

Для записи множества используют фигурные скобки: «{ »- множество открывается; "}" — множество закрывается. А само множество называют заглавными латинскими буквами: А, В, С и так далее.

Примеры.

1 . Записать множество А , состоящее из всех гласных букв в слове «математика» .

Решение. А={а, е, и}. Вы видите: несмотря на то,что в слове «математика» имеется три буквы «а» — в записи множества повторений не допускается, и буква «а» записывается только один раз. Множество А состоит из трех элементов.

2. Записать множество всех правильных дробей со знаменателем 5 .

Решение. Вспоминаем: правильной называют обыкновенную дробь, у которой числитель меньше знаменателя. Обозначим через В искомое множество. Тогда:

Множество В состоит из четырех элементов.

II. Множества состоят из элементов и бывают конечными или бесконечными. Множество, которое не содержит ни одного элемента, называют пустым множеством и обозначают Ø.

III. Множество В называют подмножеством множества А , если все элементы множества В являются элементами множества А.

3. Какое из двух данных множеств В и С К ,

если В ={-1; 3; 4}, C ={0; 3; 4; 5), K ={0; 2; 3; 4; 5; 6} ?

Решение. Все элементы множества С являются также элементами множества К , поэтому, множество С является подмножеством множества К. Записывают:

IV. Пересечением множеств А и В называется множество, элементы которого принадлежат и множеству А и множеству В .

4. Показать пересечение двух множеств М и F с помощью кругов Эйлера.

Решение.

Здесь на первый план выступает как раз то, что мы до сих пор принципиально оставляли в стороне, а именно, вопрос о том, как имеющиеся в множествах одинаковой мощности отношения порядка различают эти множества. Ведь те взаимно однозначные отображения самого общего вида, которые мы до сих пор допускали, нарушали все эти отношения - вспомните хотя бы только об отображении квадрата на отрезок! Я бы хотел особенно подчеркнуть значение именно этого второго раздела учения о множествах; ведь не может же это учение иметь своей целью устранить посредством введения новых, более общих понятий те различия, которые с давних пор вошли в обиход математики; скорее, наоборот, это учение может и должно служить тому, чтобы с помощью общих понятий познать эти различия в их самой глубокой сущности.

Порядковые типы счетных множеств.

Теперь наша цель заключается в том, чтобы проиллюстрировать на определенных, общеизвестных примерах понятие различных возможных расположений элементов множества в определенном порядке. Если начинать со счетных множеств, то мы уже знаем три совершенно разные примера расположения элементов в таких множествах, столь различные между собой, что равенство их мощностей составляло, как мы видели, особую и ни в каком случае не самоочевидную теорему; это следующие множества:

1) множество натуральных чисел;

2) множество всех (отрицательных и положительных) целых чисел;

3) множество всех рациональных чисел и множество всех алгебраических чисел.

Расположение элементов во всех этих трех множествах имеет одно общее свойство, в силу которого оно называется линейным порядком в множестве. Это свойство состоит в следующем: из каждых двух элементов какой-нибудь один всегда предшествует другому, т. е., выражаясь алгебраически, всегда известно, какой элемент меньше и какой больше, и, далее, если из трех элементов а, b, с элемент а предшествует элементу b, а элемент b - элементу с, то всегда а предшествует элементу с (если , то

Но, с другой стороны, в рассмотренных примерах имеют место такие характерные различия: в первом множестве существует первый элемент (нуль), который предшествует всем остальным, но нет последнего элемента, который следовал бы за всеми другими; во втором множестве нет ни первого, ни последнего элемента. Но в обоих этих множествах есть то общее, что за всяким элементом непосредственно следует определенный ближайший элемент, и всякому элементу непосредственно предшествует определенный другой элемент.

В противоположность этому у третьего множества между каждыми двумя элементами всегда есть, как мы уже видели выше, бесконечно много других элементов; такое свойство множества мы обозначали термином «всюду плотное множество», так что, в частности, среди всех рациональных или алгебраических чисел, лежащих между а и b, если не считать самих этих чисел, нет ни наименьшего, ни наибольшего числа. Таким образом, способы расположения элементов в этих трех множествах, т. е. их порядковые типы, различны между собой, хотя сами множества имеют одинаковые мощности. С этим можно связать - и это действительно делают представители теории множеств - вопрос о всех вообще возможных порядковых типах счетных множеств.

Непрерывность континуума. Перейдем теперь к рассмотрению множеств мощности континуума; здесь нам известно одно множество с имеющимся в нем линейным порядком, а именно, континуум всех действительных чисел. Но наряду с ним в двумерном и многомерных случаях мы имеем примеры множеств с расположением элементов, отличным от того, который мы назвали «линейным». Так, в случае множества для того чтобы определить взаимное расположение двух точек, небходимы уже не одно, а два соотношения типа неравенств.

Здесь наиболее важно проанализировать понятие непрерывности одномерного континуума; открытие того, что это понятие действительно основано только лишь на простых свойствах порядка, свойственного множеству является первой замечательной заслугой учения о множествах в деле выяснения основных математических понятий, а именно, оказывается, что все свойства непрерывности континуума проистекают из того, что последний представляет собой линейно упорядоченное множество со следующими двумя свойствами:

1. Если разделить множество на какие-либо две части А, В, но таким образом, чтобы, всякий элемент принадлежал какой-либо одной из этих частей и чтобы все элементы, входящие в часть А, предшествовали всем элементам части В, то в таком случае либо А имеет последний элемент, либо В имеет первый элемент.

Вспоминая дедекиндово определение иррациональных чисел мы можем выразить это свойство еще так: всякое «сечение» в нашем множестве производится одним из его элементов.

2. Между любыми двумя элементами множества имеется бесконечно много других элементов.

Этим вторым свойством обладают не только континуум но и счетное множество всех рациональных чисел; первое же свойство указывает на существенное различие между этими упорядоченными множествами. Всякое линейно упорядоченное множество, обладающее обоими этими свойствами, в учении о множествах называют непрерывным по той причине, что для него действительно можно доказать все теоремы, которые имеют место для континуума в силу его непрерывности.

Я хочу указать еще на то, что эти свойства непрерывности можно формулировать также несколько иначе, а именно, исходя из так называемых «основных» рядов Кантора. Основным рядом называют такую счетную последовательность элементов данного множества, что в самом множестве либо либо Некоторый элемент а множества называют предельным элементом основного ряда, если - в первом случае - в основном ряду всегда найдутся элементы, большие всякого элемента, лежащего в данном множестве до а, но вовсе нет элементов, бблыпих хотя бы одного элемента, расположенного после аналогично определяют предельный элемент во втором случае. Если множество обладает тем свойством, что всякому входящему в его состав основному ряду соответствует в нем предельный элемент, то множество называют замкнутым-, если же, наоборот, всякий элемент множества является предельным элементом некоторого основного ряда, выделенного из него, то множество называют плотным. Непрерывность множеств, имеющих мощность континуума, состоит, существенным об» разом, в соединении обоих этих свойств.

Попутно я хочу здесь напомнить, что при беседе о дифференциальном и интегральном исчислениях мы говорили, еще и о другом континууме - о континууме

Веронезе, который возникает из обыкновенного континуума посредством присоединения актуально бесконечно малых величин. Хотя таким путем получается тоже линейно упорядоченное множество, но тем не менее этот континуум обладает, конечно, совершенно иным типом расположения, чем обычный континуум теорема о том, что всякий основной ряд имеет предельный элемент, здесь уже места не имеет.


Множество – основное понятие математики и поэтому не определяется через другие.

Обычно под множеством понимают совокупность предметов, объединенных по общему признаку. Так, можно говорить о множестве студентов в группе, множестве букв русского алфавита и т.д. В повседневной жизни вместо слова «множество» употребляют слова «набор», «коллекция», «группа» и т.д. Множества принято обозначать прописными буквами латинского алфавита: А , В , С , ..., Z .

Для числовых множеств в математике приняты специальные обозначения:

N – множество натуральных чисел;

N 0 множество целых неотрицательных чисел;

Z – множество целых чисел;

Q – множество рациональных чисел;

R – множество действительных чисел.

Объекты, из которых образовано множество, называют его элементами. Например, сентябрь является элементом множества месяцев в году, число 5 – элемент множества натуральных чисел. Элементы множества принято обозначать строчными буквами латинского алфавита. Элементами множества могут быть множества. Так можно говорить о множестве групп института. Элементы этого множества – группы, являющиеся в свою очередь множествами студентов.

Связь между множеством и его элементом выражают при помощи слова «принадлежит». Высказывание «Элемент а принадлежит множеству А » записывают так: а А , причем эта запись может быть прочитана иначе: «а – элемент множества А », «множество А содержит элемент а ». Высказывание «Элемент а не принадлежит множеству А » записывают так: а А (иначе: «а не является элементом множества А », «множество А не содержит элемент а »).

Если в обыденной речи слово «множество» связывают с большим числом предметов, то в математике этого не требуется. Множество может содержать один элемент, не содержать ни одного элемента.

Множество, не содержащее ни одного элемента, называют пустым и обозначают символом . Существует лишь одно пустое множество. Примерами пустого множества могут служить множество людей на Солнце, множество натуральных корней уравнения х + 8 = 0.

Множества могут быть конечными и бесконечными.

Множество называется конечным, если существует натуральное число п , такое, что все элементы множества можно перенумеровать числами от 1 до п . в противном случае множество называют бесконечным. Примером конечного множества является множество цифр, бесконечного – множество натуральных чисел.

§ 2. Способы задания множеств

Множество считают заданным, если о любом объекте можно сказать, принадлежит он этому множеству или не принадлежит.

Множество можно задать, перечислив все его элементы. Запись С = {а, б, в, г} обозначает, что множество С содержит элементы а, б, в, г.

Каждый элемент входит в множество только один раз. Например, множество различных букв в слове «математика» запишется так: {м, а, т, е, и, к}.

Данный способ применим для конечных множеств, которые содержат небольшое число элементов.

Иногда, используя данный способ, можно задать и бесконечное множество. Например, множество натуральных чисел может быть представлено в виде: N = {1, 2, 3, 4, ...}. Такой способ записи возможен лишь тогда, когда из записанной части множества видно, что скрывается под многоточием.

Другой способ задания множеств состоит в следующем: указывают характеристическое свойство его элементов. Характеристическое свойство – это такое свойство, которым обладает каждый элемент, принадлежащий множеству, и не обладает ни один элемент, который ему не принадлежит.

Случается, что одно и то же множество можно задать, указав различные характеристические свойства его элементов. Например, множество двузначных чисел, делящихся на 11 и множество натуральных чисел первой сотни, записанных двумя одинаковыми цифрами, содержат одни и те же элементы.

При данном способе задания множество может быть записано так: в фигурных скобках пишут сначала обозначение элемента, затем проводят вертикальную черту, после которой записывают свойство, которым обладают элементы данного множества. Например, множество А натуральных чисел, меньших 5, запишется так: А = {х х N , х < 5}.



Что еще почитать