В чем заключается первое начало термодинамики. Основы термодинамики. Изменение энтропии системы, совершающей цикл Карно

Представляет собой закон сохранения энергии, один из всеобщих законов природы (наряду с законами сохранения импульса, заряда и симметрии):

Энергия неуничтожаема и несотворяема ; она может только переходить из одной формы в другую в эквивалентных соотношениях.

Первое начало термодинамики представляет собой постулат - оно не может быть доказано логическим путем или выведено из каких-либо более общих положений. Истинность этого постулата подтверждается тем, что ни одно из его следствий не находится в противоречии с опытом.

Приведем еще некоторые формулировки первого начала термодинамики:

- Полная энергия изолированной системы постоянна;

- Невозможен вечный двигатель первого рода (двигатель, совершающий работу без затраты энергии).

Первое начало термодинамики устанавливает соотношение между теплотой Q, работой А и изменением внутренней энергии системы?U:

Изменение внутренней энергии системы равно количеству сообщенной системе теплоты минус количество работы, совершенной системой против внешних сил.

dU = δQ-δA (1.2)

Уравнение (1.1) является математической записью 1-го начала термодинамики для конечного, уравнение (1.2) - для бесконечно малого изменения состояния системы.

Внутренняя энергия является функцией состояния ; это означает, что изменение внутренней энергии?U не зависит от пути перехода системы из состояния 1 в состояние 2 и равно разности величин внутренней энергии U 2 и U 1 в этих состояниях:

U = U 2 -U 1 (1.3)

Следует отметить, что определить абсолютное значение внутренней энергии системы невозможно; термодинамику интересует лишь изменение внутренней энергии в ходе какого-либо процесса.

Рассмотрим приложение первого начала термодинамики для определения работы, совершаемой системой при различных термодинамических процессах (мы будем рассматривать простейший случай - работу расширения идеального газа).

Изохорный процесс (V = const; ?V = 0).

Поскольку работа расширения равна произведению давления и изменения объема, для изохорного процесса получаем:

Изотермический процесс (Т = const).

Из уравнения состояния одного моля идеального газа получаем:

δА = PdV = RT(I.7)

Проинтегрировав выражение (I.6) от V 1 до V 2 , получим

A=RT= RTln= RTln(1.8)

Изобарный процесс (Р = const).

Q p = ?U + P?V (1.12)

В уравнении (1.12) сгруппируем переменные с одинаковыми индексами. Получаем:

Q p = U 2 -U 1 +P(V 2 -V 1) = (U 2 + PV 2)-(U 1 +PV 1) (1.13)


Введем новую функцию состояния системы - энтальпию Н , тождественно равную сумме внутренней энергии и произведения давления на объем: Н = U + PV. Тогда выражение (1.13) преобразуется к следующему виду:

Q p = H 2 -H 1 = ?H (1.14)

Т.о., тепловой эффект изобарного процесса равен изменению энтальпии системы.

Адиабатический процесс (Q = 0, δQ = 0).

При адиабатическом процессе работа расширения совершается за счёт уменьшения внутренней энергии газа:

A = -dU=C v dT (1.15)

В случае если Сv не зависит от температуры (что справедливо для многих реальных газов), работа, произведённая газом при его адиабатическом расширении, прямо пропорциональна разности температур:

A = -C V ?T (1.16)

Задача №1. Найти изменение внутренней энергии при испарении 20 г этанола при температуре его кипения. Удельная теплота парообразования этилового спирта при этой температуре составляет 858,95 Дж/г, удельный объем пара - 607 см 3 /г (объемом жидкости пренебречь).

Решение :

1 . Вычислим теплоту испарения 20 г этанола: Q=q уд ·m=858,95Дж/г·20г = 17179Дж.

2 . Вычислим работу по изменению объема 20 г спирта при переходе его из жидкого состояния в парообразное: A= P?V,

где Р - давление паров спирта, равно атмосферному, 101325 Па (т.к. всякая жидкость кипит, когда давление ее паров равно атмосферному).

V=V 2 -V 1 =V ж -V п, т.к. V ж << V п, то объмом жидкости можно пренебречь и тогда V п =V уд ·m. Cледовательно, А=Р·V уд ·m. А=-101325Па·607·10 -6 м 3 /г·20г=-1230 Дж

3. Вычислим изменение внутренней энергии:

U=17179Дж - 1230 Дж = 15949 Дж.

Поскольку?U>0, то следовательно при испарении этанола происходит увеличение внутренней энергии спирта.

ПЕРВОЕ НАЧАЛО ТЕРМОДИНАМИКИ И ЕГО ПРИМЕНЕНИЕ


Основные определения

Химическая термодинамика применяет положения и законы общей термодинамики к изучению химических явлений. Для вывода закономерностей химической термодинамики нужно знать начальное и конечное состояния системы, а также внешние условия, при которых протекает процесс (температура, давление и т. п.). Химическая термодинамика не позволяет делать какие-либо выводы о внутреннем строении вещества и механизме протекания процессов. В этом заключается ограниченность термодинамического метода.

В химической термодинамике применяются те же понятия, термины и величины, что и в общей термодинамике.

Системой называется отдельное тело или группа тел, находящихся во взаимодействии и условно обособленных от окружающей среды.

Изолированной системой называют такую систему, которая не обменивается теплотой и работой с окружающей средой, т. е. энергия и объем которой постоянны.

Состояние системы - совокупность физических и химических свойств, характеризующих эту систему.

Состояние термодинамической системы характеризуется термодинамическими параметрами. К термодинамическим параметрам относятся температура, давление, объем, концентрация и др.

Термодинамическим процессом называется всякое изменение в системе, связанное с изменением хотя бы одного из термодинамических параметров. Если изменение параметра зависит только от начального и конечного состояния и не зависит от пути процесса, то такой параметр называется функцией состояния.

Круговым процессом, или циклом, называется процесс, при котором термодинамическая система, выйдя из некоторого начального состояния и претерпев ряд изменений, возвращается в то же самое состояние; в этом процессе изменение любого параметра состояния равно нулю. В зависимости от условий протекания различают процессы: изобарный, изотермный, адиабатный, изохорный, изобарно-изотермный и др.

Внутренняя энергия, теплота и работа. Первое начало термодинамики

Движение является неотъемлемым свойством материи. Движение проявляется в разных формах, качественно отличающихся друг от друга, но взаимосвязанных между собой и превращающихся друг в друга. Мерой движения является энергия. В химической термодинамике важное значение имеет понятие внутренней энергии.

Внутренней энергией системы называется сумма потенциальной энергии взаимодействия всех частиц тела между собой и кинетической энергии их движения, т. е. внутренняя энергия системы складывается из энергии поступательного и вращательного движения молекул, энергии внутримолекулярного колебательного движения атомов и атомных групп, составляющих молекулы, энергии вращения электронов в атомах, энергии, заключающейся в ядрах атомов, энергии межмолекулярного взаимодействия и других видов энергии. Внутренняя энергия - это общий запас энергии системы за вычетом кинетической энергии системы в целом и ее потенциальной энергии положения. Абсолютная величина внутренней энергии тела неизвестна, но для применения химической термодинамики к изучению химических явлений важно знать только изменение внутренней энергии при переходе системы из одного состояния в другое.

Все изменения внутренней энергии при ее переходе от одного тела к другому можно разбить на две группы. В первую группу входит форма перехода энергии за счет хаотического столкновения молекул двух соприкасающихся тел. Мерой передаваемой таким способом энергии является теплота.

Во вторую группу входят многие формы перехода энергии при перемещении масс, состоящих из большого числа частиц, под действием каких-либо сил. Сюда относятся поднятие тел в поле тяготения, переход электричества от большего к меньшему потенциалу, расширение газа и т. п. Общей мерой передаваемой таким способом энергии является работа.

Во многих процессах передача внутренней энергии может осуществляться частично в виде теплоты и частично в виде работы. Таким образом, теплота и работа характеризуют качественно и количественно две различные формы передачи энергии от одного тела к другому; они измеряются в тех же единицах, что и энергия.

Работу или энергию любого вида можно представить как произведение двух факторов: фактора интенсивности на изменение фактора емкости, называемого также фактором экстенсивности (если фактор интенсивности остается постоянным во время процесса). Так, например, обычная механическая работа равна произведению приложенной силы на приращение пути. Если две системы могут взаимодействовать, то они образуют одну общую систему, причем фактор емкости новой системы равен сумме факторов емкости составляющих ее частей при условии, если факторы интенсивности обеих исходных систем одинаковы. Если факторы интенсивности исходных систем неодинаковы, то в общей системе начинается процесс, протекающий в сторону выравнивания факторов интенсивности за счет изменения соответствующих факторов емкости. Так, например, давления выравниваются за счет изменения объемов. Взаимосвязь между внутренней энергией, работой и теплотой устанавливается на основе первого начала термодинамики. Первое начало термодинамики представляет собой постулат, вытекающий из многовекового опыта человечества. Существует ряд формулировок первого начала термодинамики, которые равноценны друг другу и вытекают одна из другой. Если одну из них рассматривать как исходную, то другие получаются из нее как следствия.

Первое начало термодинамики непосредственно связано с законом сохранения энергии и утверждает, что в любой изолированной системе запас энергии остаётся постоянным. Отсюда следует закон эквивалентности различных форм энергии: разные формы энергии переходят друг в друга в строго эквивалентных количествах. Первое начало можно выразить и в такой форме: вечный двигатель первого рода невозможен, т. е. невозможно построить машину, которая давала бы механическую работу, не затрачивая на это соответствующего количества молекулярной энергии; или внутренняя энергия является функцией состояния, т. е. ее изменение не зависит от пути процесса, а зависит только от начального и конечного состояния системы.

Докажем, что внутренняя энергия является функцией состояния. Пусть при переходе системы из первого состояния во второе по одному пути изменение внутренней энергии равно ΔUа, а по другому пути - ΔUb,т. е. предположим вначале, что изменение внутренней энергии зависит от пути процесса. Если величины ΔUа и ΔUbразличны, то, изолируя систему и переходя из состояния 7 в состояние 2 одним путчем, а затем обратно из состояния 2 в состояние 1 другим путем, получали бы выигрыш или потерю энергии ΔUb-ΔUа-но по условию система изолированная, т. е. она не обменивается теплом и работой с окружающей средой и запас ее энергии согласно первому началу термодинамики должен быть постоянным. Таким образом, сделанное предположение ошибочно. Изменение внутренней энергии при переходе системы из состояния 1 в состояние 2 не зависит от пути процесса, т. е. внутренняя энергия является функцией состояния.

Изменение внутренней энергии ΔUсистемы может происходить за счет обмена теплотой Qи работой А с окружающей средой. Условились считать положительными величинами теплоту, полученную системой и работу, совершенную системой. Тогда из первого начале термодинамики следует что полученная системой извне теплота Qрасходуется на приращение внутренней энергии ΔUи работу А, совершенную системой, т, е.

Q = ΔU + A.(II, 1)


Уравнение (II, 1) представляет собой математическую формулировку первого начала термодинамики. Величины ΔU, Qи А в уравнении (II, 1) могут иметь как положительное, так и отрицательное значение в зависимости от характера процесса. Если, например, все три величины отрицательны, то это означает, что отданная системой внешней среде теплота равна убыли внутренней энергии плюс полученная системой работа.

В отличие от внутренней энергии, теплота Qи работа А не являются функциями состояния, они зависят от пути процесса. Разность их

Q- A= ΔU (II, 2)

от пути процесса не зависит. Для бесконечно малого изменения этих величин имеем

термодинамика эндотермический реакция

δQ = dU + δA,(II,3)

где dU- полный дифференциал внутренней энергии системы; δQ- бесконечно малое количество теплоты; δА - бесконечно малое количество работы.

Работа расширения идеального газа в разных процессах

Для многих систем единственный вид работы - работа расширения. Практическое значение имеет обычно работа расширения газа, причем многие газы при достаточно низких давлениях и сравнительно высоких температурах приближенно подчиняются законам идеальных газов. Рассмотрим математические соотношения для вычисления работы расширения идеального газа в разных процессах. При расширении газа совершается работа, которая вычисляется по уравнению


или в интегральной форме

,(11,6)

Интегрирование уравнения (II, 6) возможно только для процесса расширения или сжатия газа в условиях, близких к равновесным. Совершаемая при этом работа является наибольшей и называется максимальной работой.

Для интегрирования уравнения (II, 6) нужно знать зависимость между давлением и объемом газа, т. е. уравнение состояния газа.

Эта зависимость для идеального газа описывается уравнением состояния Менделеева - Клапейрона:

где n - число молей идеального газа; R- универсальная газовая постоянная, равная 8,314 дж/моль-град.

Рассмотрим выражения для максимальной работы расширения идеального газа в пяти процессах: изобарном, изотермном, адиабатном, изохорном и изобарно-изотермном.

1. Изобарный процесс осуществляется при постоянном давлении (р = const). При этом из уравнения (II, 6) получаем

Свойства тел при их механическом и тепловом взаимодействия друг с другом достаточно хорошо могут быть описаны на основе молекулярно - кинетической теории . Согласно этой теории все тела состоят из мельчайших частиц – атомов, молекул или ионов, которые находятся в непрерывном хаотическом движении, называемом тепловым , и взаимодействуют между собой. Движение этих частиц подчиняется законам механики. Состояние системы таких частиц определяется совокупностью значений ее термодинамических параметров (или параметров состояния), т.е. физических величин, характеризующих макроскопические свойства системы. Обычно в качестве параметров состояния выбирают температуру, давление, удельный объем. Внутренней энергией такой системы называется энергия, зависящая только от состояния термодинамической системы. Внутренняя энергия системы состоит из кинетической энергии молекул, составляющих систему, потенциальной энергии их взаимодействия друг с другом, внутримолекулярной энергии (т.е. энергии взаимодействия атомов или ионов в молекулах, энергии электронных оболочек атомов и ионов, внутриядерной энергии) и энергии электромагнитного излучения в системе.

Система может обладать также и внешней энергией , которая представляет собой сумму кинетической энергия движения системы как целого (кинетической энергии центра масс системы) и потенциальной энергии системы в поле внешних сил. Внутренняя и внешняя энергия составляют полную энергию системы.

Однако строгий подсчет внутренней энергии тела затруднен. Внутренняя энергия может быть определена только с точностью до постоянного слагаемого, которое нельзя найти методами термодинамики. Но в большинстве случаев приходится иметь дело только с изменениями внутренней энергии DU , а не с ее абсолютным значением U , поэтому отсчет внутренней энергии можно вести от внутримолекулярной энергии, которую в большинстве случаев можно считать постоянным слагаемым. Чаще всего за нуль внутренней энергии (U =0) принимают энергию, которой обладает система при абсолютном нуле (т.е. T =0 K).

Внутреннюю энергию тела можно изменить путем теплообмена или механическим воздействием, т.е. производя над телом работу . Теплообмен и механическое воздействие в ряде случаев могут приводить к одинаковым изменениям внутренней энергии тела. Это дает возможность сравнивать теплоту и работу и измерять их в одинаковых единицах. Теплота представляет собой энергию, которая передается от одного тела к другому при их контакте или путем излучения нагретого тела, т.е. по существу мы имеем дело с работой, которую совершают уже не макроскопические тела, а хаотически движущиеся микрочастицы. Таким образом, термодинамическая система может получать или отдавать некоторое количество теплоты dQ , может производить работу или над ней может быть произведена работа. Совершение системой или над системой работы является перемещение взаимодействующих с ней внешних тел . В случае квазистатического, равновесного процесса элементарная работа dA , совершенная для изменения объема тела на величину dV , равна


Где p - давление.

Данная работа dA называется работой расширения и представляет собой работу, которую система производит против внешних сил .

Полная работа при переходе системы из состояния с объемом V 1 в состояние с объемом V 2 будет равна

Из геометрического смысла определенного интеграла следует, что работа А , совершаемая системой при переходе из первого состояния во второе, будет равна площади под кривой, описывающей данный процесс в координатах p , V (т.е. заштрихованной площади криволинейной трапеции, см. рис.1). Следовательно, работа зависит не только от начального и конечного состояния системы, но и от того каким образом был осуществлен переход из одного состояния в другое.

Работа, как и теплота, зависит от того, каким образом осуществляется процесс. Работа и теплота наряду с внутренней энергией также являются формами энергии. Закон сохранения энергии в термодинамике называют первым началом (или первым законом) термодинамики .

Для практического использования первого начала термодинамики надо условиться о выборе знака для теплоты и работы. Теплоту будем считать положительной, когда она сообщается системе, а работу положительной, когда система совершает ее против действия внешних сил.

Первое начало термодинамики формулируется следующим образом: количество сообщенного системе тепла dQ расходуется на изменение внутренней энергии системы dU и совершение работы dA этой системой над внешними телами.

(4)

Внутренняя энергия является полным дифференциалом. Она не зависит от вида процесса, а определяется только начальным и конечным состоянием системы. При циклическом процессе изменение внутренней энергии равно нулю, т.е. Q =A .

30. Температура. Температурные шкалы. Теплоемкость и внутренняя энергия идеального газа. Теплоемкости С р и С v

Температура - одно из основных понятий, играющих важнейшую роль в физике в целом.

Температура - физическая величина, характеризующая состояние термодинамического равновесия макроскопической системы и определяющая направление теплообмена между телами.

Понятие температуры в термодинамике введено исходя из следующих положений:

1. Если тела А и В находятся в тепловом контакте, и теплота переходит от тела А к телу В, то температура тела А выше.

2. Если теплота не переходит от тела А к телу В и наоборот, тела А и В обладают одинаковой температурой.

3. Если температура тела А равна температуре тела С и температура тела В равна температуре тела С, то тела А и В также обладают равной температурой.

В молекулярно-кинетической теории газов показано, что температура является мерой средней кинетической энергии поступательного движения молекул.

Температура измеряется с помощью термометрических тел (какой либо параметр которых зависит от температуры).

В настоящее время используют две температурные шкалы .

Международная практическая шкала (шкала Цельсия), градуированная в градусах Цельсия (°С) по двум реперным точкам - температурам замерзания и кипения воды при давлении 1,013·10 5 Па, которые принимаются соответственно 0°С и 100°С.

Термодинамическая температурная шкала (шкала Кельвина), градуированная в градусах Кельвина (К), определяется по одной реперной точке - тройной точке воды - температуре, при которой лед, вода и насыщенный пар при давлении 609 Па находятся в термодинамическом равновесии. Температура этой точки по данной шкале равна 273,16 К. Температура T= 0 K называется нулем Кельвина .

Термодинамическая температура (T ) и температура (t ) по шкале Цельсия связаны соотношением Т =273,15+t

Различные тела можно нагреть до одной и той же температуры путем подведения различного количества теплоты. Это означает, что различные вещества обладают разной восприимчивостью к нагреванию.

Эту восприимчивость характеризует величина, называемая теплоемкостью .

Основные законы, которые являются основой термодинамики, называют началами. В основании термодинамики лежат три начала. Первое начало термодинамики является законом сохранения энергии для термодинамических процессов. В интегральном виде формула первого начала термодинамики выглядит как:

что означает: количество теплоты, подводимое к термодинамической системе, идет на совершение данной системой работы и изменение ее внутренней энергии. Условлено считать, что если теплота к системе подводится, то она больше нуля ( title="Rendered by QuickLaTeX.com" height="17" width="65" style="vertical-align: -4px;">) и если работу выполняет сама термодинамическая система, то она положительна ( title="Rendered by QuickLaTeX.com" height="12" width="48" style="vertical-align: 0px;">).

Первое начало термодинамики можно представить в дифференциальном виде, тогда формула для него будет:

где - бесконечно малое количество теплоты, подводимое к системе; - элементарная работа системы; - малое изменение внутренней энергии системы.

Если исследуемой термодинамической системой является идеальный газ, то работа выполняемая им связана с изменением объема (), в таком случае формулой первого начала термодинамики (в дифференциальном виде) можно считать выражение:

Следует напомнить, что первое начало термодинамики не указывает направление, в котором происходит термодинамический процесс. Формула первого начала отображает только изменение параметров системы, если процесс происходит. В термодинамике за указание на направление процесса отвечает второе начало.

Формулы первого начала термодинамики для процессов

Для процесса, происходящего в некоторой массе газа при постоянной температуре (изотермический процесс), формула первого начала термодинамики преобразуется к виду:

Из выражения (4) следует, что вся теплота, которую получает термодинамическая система, расходуется на совершение этой системой работы.

Формулой первого начала термодинамики для изохорного процесса служит выражение:

При изохорном процессе, все тепло, полученное системой, идет на увеличение ее внутренней энергии.

В изобарном процессе формула первого закона термодинамики остается без изменения (3).

Адиабатный процесс отличается тем, что он происходит без обмена теплотой с окружающей средой. В формуле для первого начала термодинамики это отражается так:

В адиабатическом процессе газ совершает работу за счет своей внутренней энергии.

Примеры решения задач по теме «Первый закон термодинамики»

ПРИМЕР 1

Задание На рис.1 изображены изотермы AB и CD. Найдите отношение количества теплоты (), которое получает одна и та же масса газа в процессах I и II. Считайте массу газа в процессах неизменной.

Решение Процесс I является изохорным. Для изохорного процесса первое начало термодинамики запишем как:

Процесс II - является изобарным, для него первое начало термодинамики принимает вид:

где использовано уравнение состояния идеального газа для изобарного процесса и рассмотрены начальное и конечное состояния газа:

Найдем искомое отношение:

Ответ =

ПРИМЕР 2

Задание Какое количество теплоты сообщили одноатомному идеальному газу в количестве моль, если провели с ним изобарное нагревание? Температура изменилась на K.
Решение Основой для решения задачи является первое начало термодинамики, которое для изобарного процесса запишем как:

Для изобарного процесса работа газа равна:

Внутренняя энергия может изменяться за счет в основном двух различных процессов: совершения над телом работы А и сообщения ему количества тепла Q. Совершение работы сопровождается перемещением внешних тел, воздействующих на систему. Так, например, при вдвигании поршня, закрывающего сосуд с газом, поршень, перемещаясь, совершает над газом работу Л. По третьему закону. Ньютона газ при этом совершает над поршнем работу

Сообщение газу тепла не связано с перемещением внешних тел и, следовательно, не связано с совершением над газом макроскопической (т. е. относящейся ко всей совокупности молекул, из которых состоит тело) работы. В этом случае изменение внутренней энергии обусловлено тем, что отдельные молекулы более нагретого тела совершают работу над отдельными молекулами тела, нагретого меньше. Передача энергии происходит при этом также через излучение. Совокупность микроскопических (т. е. захватывающих не все тело, а отдельные его молекулы) процессов, приводящих к передаче энергии от тела к телу, носит название теплопередачи.

Подобно тому как количество энергии, переданное одним телом другому, определяется работой А, совершаемой друг над другом телами, количество энергии, переданное от тела к телу путем теплопередачи, определяется количеством тепла Q, отданного одним телом другому. Таким образом, приращение внутренней энергии системы должно быть равно сумме совершенной над системой работы А и количества сообщенного системе тепла

Здесь - начальное и конечное значения внутренней энергии системы. Обычно вместо работы А, совершаемой внешними телами над системой, рассматривают работу А (равную -А), совершаемую системой над внешними телами. Подставив -А вместо А и разрешив уравнение (83.1) относительно Q, получим:

Уравнение (83.2) выражает закон сохранения энергии и представляет собой содержание первого закона (начала) термодинамики. Словами его можно выразить следующим образом: количество тепла, сообщенное системе, идет на приращение внутренней энергии системы и на совершение системой работы над внешними телами.

Сказанное отнюдь не означает, что всегда при сообщении тепла внутренняя энергия системы возрастает. Может случиться, что, несмотря на сообщение системе тепла, ее энергия не растет, а убывает . В этом случае согласно (83.2) , т. е. система совершает работу как за счет получаемого тепла Q, так и за счет запаса внутренней энергии, убыль которой равна . Нужно также иметь в виду, что величины Q и А в (83.2) являются алгебраическими означает, что система в действительности не получает тепло, а отдает).

Из (83.2) следует, что количество тепла Q можно измерять в тех же единицах, что и работу или энергию. В СИ единицей количества тепла служит джоуль.

Для измерения количества тепла применяется также особая единица, называемая калорией. Одна калория равна количеству тепла, необходимому для нагревания 1 г воды от 19,5 до 20,5 °С. Тысяча калорий называется большой калорией или килокалорией.

Опытным путем установлено, что одна калория эквивалентна 4,18 Дж. Следовательно, один джоуль эквивалентен 0,24 кал. Величина называется механическим эквивалентом тепла.

Если величины, входящие в (83.2), выражены в разных единицах, то некоторые из этих величии нужно умножить на соответствующий эквивалент. Так, например, выражая Q в калориях, a U и А в джоулях, соотношение (83.2) нужно записать в виде

В дальнейшем мы будем всегда предполагать, что Q, А и U выражены в одинаковых единицах, и писать уравнение первого начала термодинамики в виде (83.2).

При вычислении совершенной системой работы или полученного системой тепла обычно приходится разбивать рассматриваемый процесс на ряд элементарных процессов, каждый из которых соответствует весьма малому (в пределе - бесконечно малому) изменению параметров системы. Уравнение (83.2) для элементарного процесса имеет вид

где - элементарное количество тепла, - элементарная работа и - приращение внутренней энергии системы в ходе данного элементарного процесса.

Весьма важно иметь в виду, что и нельзя рассматривать как приращения величин Q и А.

Соответствующее элементарному процессу А какой-либо величины можно рассматривать как приращение этой величины только в том случае, если соответствующая переходу из одного состояния в другое, не зависит от пути, по которому совершается переход, т. е. если величина f является функцией состояния. В отношении функции состояния можно говорить о ее «запасе» в каждом из состояний. Например, можно говорить о запасе внутренней энергии, которым обладает система в различных состояниях.

Как мы увидим в дальнейшем, величина совершенной системой работы и количество полученного системой тепла зависят от пути перехода системы из одного состояния в другое. Следовательно, ни Q, ни А не являются функциями состояния, в силу чего нельзя говорить о запасе тепла или работы, которым обладает система в различных состояниях.



Что еще почитать