Отличительные особенности насекомых. Каковы основные признаки насекомых

Любая деятельность насекомых связана с непрерывной обработкой звуковой, обонятельной, зрительной, осязательной и иной информации. В том числе пространственной, геометрической, количественной.

Важной особенностью этих миниатюрных, но очень сложно устроенных созданий является их умение с помощью собственных приборов точно оценивать ситуацию. Среди них и определители различных физических полей, которые позволяют предвидеть землетрясения, извержения вулканов, наводнения, изменения погоды. Тут отсчитывающие время внутренние биологические часы, и своего рода спидометры, позволяющие контролировать скорость, и навигационные приборы.

Органы чувств насекомых нередко связывают с головой. Но оказывается только их глаза - единственный орган, подобие которого есть у других животных. А структуры, ответственные за сбор информации об окружающей среде, находятся у насекомых в самых разных частях тела. Они могут определять температуру предметов и пробовать пищу на вкус ногами, определять присутствие света спиной, слышать коленками, усами, хвостовыми придатками, волосками тела и т.д.

Тонкое обоняние и вкус позволяют им находить пищу. Разнообразные железы насекомых выделяют вещества для привлечения собратьев, половых партнеров, отпугивания соперников и врагов, а высокочувствительное обоняние способно улавливать запах этих веществ даже за несколько километров.

Насекомые наделены превосходным цветовым зрением и целесообразными приборами ночного видения. Любопытно, что во время отдыха они не могут закрывать глаза и поэтому спят с открытыми.

Познакомимся с различными анализирующими системами насекомых более подробно.

Зрительная система

Вся сложнейшая зрительная система насекомых помогает им, как и большинству животных, получать основную информацию об окружающем мире. Зрение необходимо насекомым при поиске пищи, чтобы избегать хищников, исследовать объекты интереса или обстановку, взаимодействовать с другими особями при репродуктивном и общественном поведении.

Разнообразие в устройстве глаз. Глаза у них бывают сложными, простыми или с добавочными глазками, а также личиночными. Наиболее сложные - фасеточные глаза, которые состоят из множества омматидиев, образующих на поверхности глаза шестигранные фасетки.

По своей сути омматидий - это крошечный зрительный аппарат, имеющий миниатюрную линзу, светопроводящую систему и светочувствительные элементы. Каждая фасетка воспринимает лишь небольшую часть, фрагмент предмета, а все вместе они обеспечивают мозаичное изображение объекта целиком. Фасеточные глаза, свойственные большинству взрослых насекомых, расположены по сторонам головы.

У отдельных насекомых, например у стрекозы-охотницы, быстро реагирующей на передвижение добычи, глаза занимают половину головы. Каждый ее глаз состоит из 28 тысяч фасеток.

Именно глаза способствуют быстрой реакции насекомого-охотника, например богомола. Это, кстати, единственное насекомое, которое способно обернуться и посмотреть себе за спину. Крупные глаза обеспечивают богомолу бинокулярное зрение и позволяют точно рассчитать расстояние до объекта его внимания. Эта способность в сочетании с быстрым выбрасыванием передних ног в сторону добычи делает богомолов превосходными охотниками.

А у жучков семейства вертячек, бегающих по воде, глаза позволяют одновременно видеть добычу и на поверхности воды и под водой. Благодаря зрительной анализирующей системе эти маленькие существа способны постоянно вносить поправки на коэффициент преломления воды.

Приборы ночного видения. У человека для ощущения тепловых лучей имеются терморецепторы кожи, которые реагируют на излучение только мощных источников, таких как Солнце, костер, раскаленная печь. Но он лишен возможности воспринимать инфракрасное излучение живых существ. Поэтому, чтобы определять в темноте местонахождение объектов по их собственному или отраженному от них тепловому излучению, учеными были созданы приборы ночного видения. Однако эти приборы по своей чувствительности уступают природным «термолокаторам» некоторых ночных насекомых, в том числе тараканов. У них существует особое инфракрасное зрение - свои приборы ночного видения.

Уникальные инфракрасные локаторы есть и у некоторых ночных бабочек для поиска «своих» цветков, раскрывающихся именно в темноте. А чтобы переводить невидимые тепловые лучи в видимое изображение, в их глазах создается эффект флуоресценции. Для этого инфракрасные лучи проходят через сложную оптическую систему глаза и фокусируются на специально подготовленном пигменте. Тот флуоресцирует, и таким образом инфракрасное изображение переходит в видимый свет. И тогда в глазах бабочки появляются видимые образы цветков, которые ночью испускают излучение именно в инфракрасной области спектра.

Таким образом, у этих цветков есть передатчики излучения, а у ночных бабочек - его приёмники, и они целесообразно «настроены» друг на друга.

Инфракрасное излучение играет немаловажную роль и в сближении ночных бабочек противоположного пола. Оказывается, в результате протекающих физиологических процессов температура тела бабочек некоторых видов значительно выше температуры окружающей среды. И что самое интересное - она мало зависит от температуры окружающего воздуха. То есть с понижением внешней температуры внутриорганизменные процессы у них усиливаются, как и у теплокровных животных.

Теплое тело бабочки становится источником инфракрасных лучей. Взмахи крыльев прерывают поток этих лучей с определенной частотой. Предполагается, что, воспринимая эти определенные ритмические колебания инфракрасного излучения, самец отличает самку своего вида от самок других видов.

Органы слуха

Чем слышит большинство животных и человек? Ушами, где звуки вызывают вибрацию барабанной перепонки - сильную или слабую, медленную или быструю. Любые изменения вибраций сообщают организму информацию о природе слышимого звука.

А чем слышат насекомые?

Особенности «ушей» насекомых. Во многих случаях тоже своеобразными «ушами», но у насекомых они находятся на непривычных для нас местах: на усах - как у самцов комаров, муравьев, бабочек, на хвостовых придатках - как у американского таракана, на животе - как у саранчи.

Некоторые насекомые не обладают специальными органами слуха. Но они способны воспринимать различные колебания воздушной среды, в том числе звуковые колебания и ультразвуковые волны, недоступные нашему уху. Чувствительными органами у таких насекомых являются тонкие волоски либо мельчайшие чувствительные палочки.

Они во множестве расположены на разных частях тела и связаны с нервными клетками. Так, у волосатых гусениц «ушами» являются волоски, а у голых - весь кожный покров тела.

Слуховая система насекомых позволяет им избирательно реагирование на относительно высокочастотные вибрации - они воспринимают малейшие сотрясения поверхности, воздуха или воды.

Например, жужжащие насекомые вызывают звуковые волны за счет быстрых взмахов крыльев. Такую вибрацию воздушной среды, например писк комаров, самцы воспринимают своими чувствительными органами, расположенными на усиках. И таким образом они улавливают воздушные волны, которые сопровождают полет других комаров и адекватно реагируют на полученную звуковую информацию.

Орган слуха у кузнечиков расположен на голенях передних ног, движение которых происходит по дугообразным траекториям. Своеобразные «уши» как бы пеленгуют, или сканируют, пространство по обе стороны от его туловища. Анализирующая система, получив сигналы, обрабатывает поступающую информацию и управляет действиями насекомого, посылая необходимые импульсы в определенные мышцы. В одних случаях кузнечик точными командами направляется к источнику звука, в других же, при неблагоприятных для него обстоятельствах, - спасается бегством.

Используя точную акустическую аппаратуру, энтомологи установили, что чувствительность органов слуха кузнечиков и некоторых их родственников необычайно высока. Так, саранча и кузнечики некоторых видов могут воспринимать звуковые волны с амплитудой менее диаметра атома водорода.

Общение сверчков. Замечательным инструментом для общения с подругой наделен сверчок. При создании нежной трели, он потирает острой стороной одного надкрылья о поверхность другого. А для восприятия звука у самца и самки существует особо чувствительная тонкая кутикулярная мембрана, которая играет роль барабанной перепонки.

Показателен такой опыт: стрекочущего самца сажали перед микрофоном, а самку помещали в другой комнате у телефона. При включении микрофона самка, заслышав видотипичное стрекотание самца, устремлялась к источнику звука - телефону.

Ультразвуковая защита бабочек. Насекомые способны издавать звуки и воспринимать их в ультразвуковом диапазоне. За счет этого некоторые кузнечики, богомолы, бабочки спасают свою жизнь.

Так, ночные бабочки обеспечены устройством, которое предупреждает их о появлении летучих мышей, использующих для ориентации и охоты ультразвуковые волны. В груди, например, бабочки совки расположены специальные органы для акустического анализа таких сигналов. Они позволяют улавливать ультразвуковые импульсы охотящихся кожанов на расстоянии до 30 метров.

Как только бабочка воспринимает сигнал от локатора хищника, включаются ее защитные поведенческие действия. Ощутив ультразвуковые импульсы летучей мыши на сравнительно большом расстоянии, бабочка резко меняет направление полета, применяя обманный маневр - как бы ныряет вниз. При этом она начинает выделывать фигуры высшего пилотажа - спирали и «мертвые петли», чтобы уйти от погони. А если хищник оказывается на расстоянии менее 6 метров, бабочка складывает крылья и падает на землю. И летучая мышь не обнаруживает неподвижное насекомое.

Кроме того, бабочки некоторых видов обладают еще более сложными защитными реакциями. Обнаружив сигналы летучей мыши, они сами начинают издавать ультразвуковые импульсы в виде щелчков. Причем эти импульсы так действуют на хищника, что он, как бы пугаясь, улетает прочь. Что же заставляет таких довольно крупных по сравнению с бабочкой животных прекращать преследование и бежать с поля боя?

На этот счет существуют лишь предположения. Вероятно, ультразвуковые щелчки - это специальные сигналы насекомых, сходные с теми, которые посылает сама летучая мышь. Но только они гораздо сильнее. Ожидая услышать слабый отраженный звук от собственного сигнала, преследователь вдруг слышит оглушающий грохот - словно сверхзвуковой самолет пробивает звуковой барьер. Но почему летучую мышь не оглушают посылаемые в пространство собственные мощные сигналы, а только щелчки бабочки?

Оказывается, летучая мышь хорошо защищена от собственного крика-импульса своего локатора. Иначе такой мощный импульс, который в 2 тысячи раз сильнее принимаемых отраженных звуков, мог бы оглушить мышь. Чтобы этого не произошло, ее организм изготавливает и целенаправленно применяет особое стремечко. И прежде чем отправить ультразвуковой импульс, специальная мышца оттягивает это стремечко от окна улитки внутреннего уха - и колебания механически прерываются. По существу, стремечко тоже делает щелчок, но не звуковой, а антизвуковой. После крика-сигнала оно тотчас возвращается на место, чтобы ухо снова было готово принять отраженный сигнал.

Трудно представить, с какой скоростью может действовать мышца, ответственная за выключение слуха мыши в момент посылаемого крика-импульса. При преследования добычи - это 200-250 импульсов в секунду!

В то же время «пугающая» система бабочки устроена так, что ее опасные для летучей мыши сигналы-щелчки раздаются точно в тот момент, когда охотник включает ухо для восприятия своего эха. А это означает, что ночная бабочка посылает сигналы, которые изначально идеально подобраны к локатору хищника, заставляет его испуганно улететь прочь. Для этого организм насекомого настроен на прием частоты импульса приближающегося охотника и точно в унисон с ним посылает ответный сигнал.

Такие взаимоотношения между ночными бабочками и летучими мышами вызывают у ученых много вопросов.

Могла ли у насекомых сама по себе появиться способность воспринимать ультразвуковые сигналы летучих мышей и мгновенно понимать опасность, которую они с собою несут? Могло ли у бабочек постепенно в процессе отбора и совершенствования образоваться ультразвуковое устройство с идеально подобранными защитными характеристиками?

С восприятием ультразвуковых сигналов летучих мышей тоже разобраться не просто. Дело в том, что они узнают свое эхо среди миллионов голосов и других звуков. И никакие крики-сигналы соплеменников, никакие ультразвуковые сигналы, издаваемые с помощью аппаратуры, не мешают охотиться рукокрылым. Только сигналы бабочки, даже искусственно воспроизведенные, заставляют мышь улететь прочь.

«Химическое» чувство насекомых

Высокочувствительный хоботок мух. Мухи проявляют удивительную способность ощущать окружающий мир, целенаправленно действовать соответственно обстановке, быстро двигаться, ловко манипулировать своими конечностями, для чего эти миниатюрные создания наделены всеми органами чувств и живыми приборами. Рассмотрим на некоторых примерах, как они их используют.

Известно, что мухи, так же как и бабочки, оценивают вкус пищи ногами. Но их хоботок тоже содержит чувствительные анализаторы химических веществ. На его конце имеется особая губчатая подушечка - лабеллум. При проведении очень тонкого эксперимента один из чувствительных волосков на нем включили в электрическую цепь и коснулись им сахара. Прибор зарегистрировал электрическую активность, показывая, что в нервную систему мухи поступил сигнал о его вкусе.

Хоботок мухи автоматически связан с показаниями химических рецепторов (хеморецепторов) ног. Когда появляется положительная команда от анализаторов ног, хоботок вытягивается, и муха начинает есть или пить.

При исследованиях на лапку насекомого наносили определенное вещество. По выпрямлению хоботка судили, какое вещество и в каких концентрациях улавливает муха. С помощью особой чувствительности и молниеносной реакции насекомого такой химический анализ длится всего несколько секунд. Эксперименты показали, что чувствительность рецепторов передних лапок составляет 95 % от этого показателя хоботка. А у второй и третьей пар лапок она 34 и 3 % соответственно. То есть задними ногами муха пищу не пробует.

Органы обоняния. У насекомых хорошо развиты и органы обоняния. Например, мухи реагируют на присутствие даже очень малых концентраций вещества. Усики у них короткие, но имеют перистые придатки, а потому и большую поверхность для контакта с химическими веществами. Благодаря таким антеннам мухи способны издалека и довольно быстро прилететь к свежей куче навоза или отбросов, чтобы выполнить свое предназначение санитара природы.

Обоняние помогает самкам находить и откладывают яйца на готовый питательный субстрат, то есть в ту среду, которая в дальнейшем послужит пищей для личинок.

Одним из многочисленных примеров использования мухами своего прекрасного обоняния может служить тахина-хрущеедка. Она откладывает яйца в почву, отыскав по запаху участки, заселенные хрущами. Появившиеся на свет молодые личинки, тоже пользуясь обонянием, сами разыскивают хруща.

Усиками обонятельного типа наделены и жуки. Эти антенны позволяют не только уловить сам запах вещества и направление его распространения, но и даже ощутить форму пахучего предмета.

А божьей коровке обоняние помогает находить колонии тлей, чтобы оставить там кладку. Ведь тлями питается не только она сама, но и ее личинки.

Не только взрослые жуки, но и их личинки часто наделены отличным обонянием. Так, личинки майского жука способны двигаться к корням растений (сосны, пшеницы), ориентируясь по едва повышенной концентрации углекислого газа. В экспериментах личинки сразу же направлялись к участку почвы, куда ввели небольшое количество вещества, образующего углекислый газ.

Некоторые перепончатокрылые наделены настолько острым обонянием, что оно не уступает прославленному чутью собаки. Так, самки наездников, бегая по стволу дерева или пню, усиленно шевелят усиками. Они «вынюхивают» ими личинок рогохвоста или жука-дровосека, находящихся в древесине на глубине двух - двух с половиной сантиметров от поверхности.

Или же благодаря уникальной чувствительности усиков крошечный наездник гелис одним только их прикосновением к коконам пауков определяет, что в них находится - либо недоразвитые яички, либо уже вышедшие из них малоподвижные паучки, либо яички других наездников своего вида.

Каким образом гелису удается такой точный анализ, пока не известно. Вероятнее всего, он ощущает тончайший специфический запах. Хотя не исключено, что при постукивании усиками наездник улавливает какой-либо отраженный звук.

Вкусовые ощущения. Человек четко определяет запах и вкус вещества, а у насекомых вкусовое и обонятельное ощущения зачастую не разделяются. Они выступают как единое химическое чувство (восприятие).

Насекомые, обладающие вкусовыми ощущениями, оказывают предпочтение тем или иным веществам в зависимости от питания, характерного для данного вида. При этом они способны различать сладкое, соленое, горькое и кислое. Для соприкосновения с потребляемой пищей органы вкуса могут быть расположены на различных участках тела насекомых - на антеннах, хоботке и на ногах. С их помощью насекомые получают основную химическую информацию об окружающей среде.

Так, бабочки в зависимости от вида благодаря вкусовым ощущениям оказывают предпочтение тем или иным объектам питания. Органы хеморецепции бабочек находятся на лапках и реагируют на различные вещества посредством прикосновения. Например, у бабочки крапивницы они находятся на лапках второй пары ног.

Экспериментально установлено, что если взять бабочку за крылья и коснуться лапками поверхности, смоченной сахарным сиропом, то на это отреагирует ее хоботок, хотя сам он к сахарному сиропу не чувствителен.

С помощью вкусового анализатора бабочки хорошо различают растворы хинина, сахарозы, соляной кислоты. Причем своими лапками они могут почувствовать концентрацию сахара в воде в 2 тысячи раз меньшую, чем та, что дает нам ощущение сладковатого вкуса.

Биологические часы

Как уже говорилось, все явления, связанные с жизнедеятельностью животных, подчинены определенным ритмам. Регулярно проходят циклы построения молекул, совершаются процессы возбуждения и торможения в мозге, выделяется желудочный сок, наблюдается сердцебиение, дыхание и пр. Все это происходит по «часам», которыми обладают все живые организмы. Опыты показали, что их остановка происходит только при резком охлаждении до 0ОС и ниже.

В одной из экспериментальных лабораторий, занимающейся изучением механизмов действия биологических часов, подопытных животных, в числе которых были и насекомые, охлаждали на 12 часов. Это наиболее оптимальный способ воздействия на время, протекающее в клетках их организма. При этом часы на некоторое время останавливались, а затем, после отогрева животных, снова включились.

В результате такого воздействия на тараканов биологические часы разладились. Насекомые стали засыпать в то время, когда контрольные тараканы ползли за едой. А когда те засыпали, подопытные бежали есть. То есть подопытные тараканы делали все то же самое, что и другие, только с отставанием на половину суток. Ведь продержав их в холодильнике, ученые «перевели стрелки» на 12 часов.

Далее была проведена сложнейшая микрохирургическая операция - подглоточный ганглий (часть мозга таракана), ведающий скоростью живых часов, пересадили контрольному таракану. Теперь этот таракан обрел два центра, управляющих биологическим временем. Но периоды включения различных процессов различалось у них на 12 часов, поэтому таракан совсем был сбит с толку. Он не мог отличить день от ночи: принимался есть и тут же засыпал, но через некоторое время другой ганглий будил его. В результате таракан погиб. Это показывает, как невероятно сложны и необходимы приборы времени всем живым существам.

Интересен опыт с мелкими лабораторными мушками дрозофилами. Из куколок они выходят в предутренние часы, с появлением первого солнечного луча. Часы своего развития организм дрозофил сверяет с солнечными часами. Если поместить дрозофил в полную темноту, то часы, следящие за их развитием, разлаживаются, и мухи начинают выходить из куколок в любое время суток. Но что важно - достаточно секундной вспышки света, чтобы это развитие вновь синхронизировать. Можно уменьшить вспышку света даже до половины тысячной доли секунды, но синхронизирующее действие все равно появится - выход мушек из куколок будет происходить одновременно. Лишь резкое охлаждение насекомых до 0ОС и ниже влечет за собой, как было показано выше, остановку живых часов организма. Однако стоит только их отогреть, как часы снова пойдут и будут отставать ровно на столько времени, на сколько их остановили.

Возможности насекомых для целенаправленных действий

В качестве примера, демонстрирующего великолепные возможности насекомых для целенаправленных движений, можно рассмотреть поведение мухи.

Обратите внимание, как муха суетится на столе, притрагиваясь своими подвижными лапками ко всем предметам. Вот она нашла сахар и жадно его обсасывает с помощью хоботка. Следовательно, муха прикосновением лапок может ощущать и выбирать нужную ей пищу.

Если вам захочется поймать беспокойное создание, сделать это будет совсем не просто. Вы осторожно приближаете к мухе руку, она тотчас прекращает движения и как бы настораживается. И в последний момент, едва вы взмахнете рукой, чтобы ее схватить, муха быстро улетает. Она видела вас, получила определенные сигналы о вашем намерении, об угрожающей ей опасности и спаслась бегством. Но через короткое время память помогает насекомому возвратиться. В красивом, четко направленном полете муха приземляется именно туда, откуда ее согнали, чтобы продолжить лакомиться сахаром.

Перед трапезой и после нее аккуратная муха изящно почистит ножками голову и крылья. Как видите, в этом миниатюрном животном проявляется способность ощущать окружающий мир, целенаправленно действовать соответственно обстановке, быстро двигаться, ловко манипулировать своими конечностями. Для этого муха наделена превосходными живыми приборами и удивительно целесообразными устройствами.

Она может взлетать без разбега, мгновенно останавливать свой быстрый полет, зависать в воздухе, летать вверх ногами и даже назад. За считанные секунды она может продемонстрировать множество сложных фигур высшего пилотажа, в том числе петлю. Кроме того, мухи способны выполнять в воздухе действия, которые другие насекомые могут делать только на земле, например, на лету чистить лапки.

Великолепное устройство органов движения, предоставленное мухе, позволяет ей осуществлять быстрый бег и легкое передвижение по любым поверхностям, в том числе гладким, отвесным и даже по потолку.

Нога мухи заканчивается парой коготков и подушечкой между ними. Благодаря такому устройству она проявляет поразительную способность ходить по поверхностям, на которых иные насекомые не могут даже просто удержаться. Причем коготками она цепляется за малейшие неровности на плоскости, а передвигаться по зеркально гладкой поверхности ей позволяют подушечки, покрытые пустотелыми волосками. Через эти микроскопические «шланги» из особых желез выделяется маслянистый секрет. Создаваемые им силы поверхностного натяжения и удерживают муху на стекле.

Как скатать идеальный шар? Не перестает удивлять способность одного из санитаров природы - жука-навозника делать из навоза идеально круглые шары. При этом жук скарабей, или священный копр, готовит такие шары исключительно для использования в пищу. А шары другой строго определенной формы, он скатывает для откладывания в них яиц. Четко координируемые действия позволяют жуку выполнять довольно сложные манипуляции.

Вначале жук тщательно подбирает необходимый для основы шара кусочек навоза, оценивая его качество с помощью своей сенсорной системы. Затем он очищает комок от налипшего песка и усаживается на него, обхватив задними и средними ножками. Поворачиваясь из стороны в сторону, жук выбирает нужный материал и катит шар в его сторону. Если стоит сухая жаркая погода, это насекомое работает особенно быстро, скатывая шар за считанные минуты, пока навоз еще влажный.

При изготовлении шара все движения жука отличаются точностью и отлаженностью, даже если он делает это впервые. Ведь последовательность целесообразных действий содержит наследственная программа насекомого.

Идеальную форму шару придают задние ноги, кривизна которых процессе построения организма жука неукоснительно соблюдается. Кроме того, его генетическая память сохраняет в закодированном виде способность к определенным видам стереотипных действий, и при создании шара он четко следует им. Жук неизменно заканчивает работу только тогда, когда поверхность и размеры шара совпадут с кривизной голеней его ног.

Окончив работу, скарабей ловко катит шар задними ногами к своей норке, двигаясь задом наперед. При этом он с завидным терпением преодолевает заросли растений и холмики земли, вытаскивает шар из ложбинок и канавок.

Для проверки упорства и сообразительности навозника был поставлен эксперимент. Шар прикололи к земле длинной иглой. Жук после долгих мучений и попыток сдвинуть его с места стал делать подкоп. Обнаружив иглу, скарабей тщетно пытался приподнять шар, действуя в качестве рычага спиной. Использовать для опоры рядом лежавший камушек жук не догадался. Однако когда камушек придвинули поближе, скарабей тотчас на него взобрался и снял свой шар с иглы.

Иногда навозники стараются похитить пищевой шар у соседа. При этом грабитель может вместе с хозяином докатить его до нужного места и, пока тот станет копать норку, утащить добычу. А далее, если он не голоден, бросить его, предварительно немного покатав в свое удовольствие. Однако нередко у скарабеев случаются драки даже при изобилии навоза, словно им грозит голодная смерть.

Манипуляции талантливых трубковертов. Для создания уютного гнездышка-«сигары» из молодых древесных листьев самки жучков трубковертов совершают очень сложные и разнообразные действия. «Орудиями производства» им служат ножки, челюсти и лопатка - вытянутая и на конце расширенная голова самки. Подсчитано, что процесс сворачивания «сигары» состоит из тридцати четко и последовательно проводимых операций.

Вначале самка тщательно подбирает лист. Он не должен иметь повреждений, так как является не только строительным материалом, но и запасом пищи для будущего потомства. Чтобы свернуть трубочкой лист тополя, ореха или березы, самка сначала прокалывает в определенном месте его черешок. Этот прием ей известен от рождения, он уменьшает приток соков в лист - и тогда лист быстро вянет и становится податливым для дальнейших манипуляций.

На подувядшем листе самка точными движениями делает разметку, определяя линию предстоящего разреза. Ведь трубковерт выкраивает из листа лоскут определенной довольно замысловатой формы. «Чертеж» выкройки тоже закодирован в генетической памяти насекомого.

Некогда немецкий математик Гейнс, пораженный наследственными «талантами» маленького жучка, вывел математическую формулу такого раскроя. Точность проведения расчетов, которой наделено насекомое до сих пор вызывает удивление.

После проведения предварительных работ жучок, даже совсем юный, медленно, но уверенно, сворачивает листок, приглаживая его края лопаткой. Благодаря такому технологическому приему из валиков на зубчиках листа выделяется клейкий сок. Жучок, конечно, не задумывается об этом. Выжимать клей для скрепления краев листа, чтобы обеспечить надежное жилище будущему потомству, предопределено программой его целесообразного поведения.

Работа по созданию удобного и безопасного гнездышка для малышей довольно кропотлива. Самке, работая и днем и ночью, удается за сутки свернуть лишь два листа. В каждый она откладывает по 3-4 яичка, внося тем самым свой скромный вклад в продолжение жизни всего вида.

Целенаправленные действия личинки. Классический пример врожденной последовательности действий демонстрирует личинка муравьиного льва. Ее пищевое поведение основано на стратегии засады и имеет целый ряд сложных подготовительных операций.

Вылупившаяся из яичка личинка тотчас ползет на муравьиную дорожку, привлекаемая запахом муравьиной кислоты. Знания об этом сигнальном запахе своей будущей добычи личинка получила по наследству. На дорожке она тщательно выбирает сухой песчаный участок, чтобы соорудить воронкообразную ямку-ловушку.

Для начала личинка с удивительной геометрической точностью проводит на песке круг, обозначая размер ямки. Потом одной из передних лапок она начинает ее рыть.

Чтобы выбросить песок за пределы круга, личинка нагружает его на собственную плоскую голову. Сделав это, она, пятится назад, постепенно возвращаясь к исходной позиции. После чего проводит новый круг и выкапывает следующую бороздку. И так далее, пока не дойдет до дна воронки.

В этой врожденной программе перед началом каждого цикла предусмотрена даже смена уставшей «рабочей» ноги. Поэтому следующую бороздку личинка проводит уже в противоположном направлении.

Попадающиеся на пути маленькие камушки личинка с силой выбрасывает за пределы воронки. Крупный камень, зачастую в несколько раз тяжелее самого насекомого, личинка ловко взваливает на спину и медленными осторожными движениями вытаскивает наверх. А если камень круглый и постоянно скатывается назад, она бросает бесполезную работу и принимается строить другую ямку.

Когда ловушка готова, наступает следующий ответственный для насекомого этап. Личинка зарывается в песок, выставляя наружу только длинные челюсти. Когда какое-либо маленькое насекомое оказывается у края ямы, песок под его ногами осыпается. Это служит сигналом для охотника. Используя голову как катапульту, личинка сбивает неосторожное насекомое, чаще всего муравья, удивительно точными выстрелами песчинок. Добыча скатывается вниз к поджидающему ее «льву».

В этом поведенческом комплексе все действия личинки идеально последовательны и прекрасно скоординированы - одно строго следует за другим. Однако юное насекомое не просто выполняет свои стереотипные действия, а еще и подгоняет их под конкретные условия, связанные с разной степенью засоренности и влажности песчаной почвы.

Наша планета богата различными представителями фауны. Самыми распространенными такими представителями являются, конечно же, насекомые. Насекомые принадлежат к классу беспозвоночных членистоногих животных. Они появились очень давно и на протяжении такого длительного периода разделились на предостаточно большое количество видов. Насекомые - это мелкие существа, которые отлично адаптируются в любой среде. Они находчиво защищаются и обладают очень сложной системой размножения.

Насекомые – это самая большая и многообразная группа беспозвоночных во все мире. Согласно различным данным, на сегодняшний день существует более 3 миллионов видов таких животных. Количество отрядов по разным данным варьируется от 30 до 40. На данный момент описано всего лишь о 1,5 миллионов видов насекомых. Как уже упоминалось выше, насекомые впервые на земле появились очень давно, еще в силурийский период, который был 435 - 410 миллионов лет тому назад. Однако в найденном состоянии известно несколько десяток тысяч видов. Как и все живые организмы, насекомые разнополые. Эволюция насекомых, в большинстве случаев, осуществляется с перевоплощением: яйцо превращается в личинку, далее личинка перерастает в куколку, а та в свою очередь во взрослую особь. Насекомых разделяют на три большие группы:

1) низшие, которые не обладают метаморфозом,

2) с неполным превращением,

3) с полным превращением.

Ко второй и третей группе принадлежат: прямокрылые, хоботные, пузыреногие, сетчатокрылые, ручейники, чешуекрылые, жесткокрылые, веерокрылые, блохи, перепончатокрылые, двукрылые и многие другие. Питаются они предпочтительно растениями, однако, определенные виды насекомых питаются еще и животными продуктами. Изучением насекомых занимается отдельный раздел зоологии - энтомология, что в переводе с грецкого слома «энтомон» обозначает насекомое.

По внешнему виду насекомые весьма разнообразны. Однако, всем насекомым характерны общие признаки. Тело насекомых делиться на голову, грудной отдел и брюшко. Брюшко присоединяется к грудному отделу либо неподвижно, либо с помощью тонкого ствола. У насекомых присутствует всего лишь одна пара усиков и три пары лапок. В большинстве случаев они наделены двумя парами крыльев. Но крылья развиты далеко не у всех видов насекомых, а у их личинок они могут отсутствовать либо быть слабо развитыми. Крылья насекомых исполняют главную функцию – функцию полета. Они функционируют лишь у взрослых насекомых. Дышат данные особи трахеями. Кожа у насекомых формируется из хитина, который создает прочный скелет. Плотные внешние покровы оберегают внутренние органы насекомых от различных повреждений и предохраняют от обезвоживания организма. Кровеносная система не замкнута. Нервная система состоит из узлов, которые находятся над глоткой или под ней, и узлов-пар в грудном отделе и в брюшке. Голова у насекомых, как правило, имеет округлую форму, но порой обладают совершенно необыкновенной формой. На голове у них находятся органы чувств и органы, с помощью которых насекомые захватывают добычу. Органы чувств включают в себя органы обоняния, осязания и зрения. Глаза у них расположены в боковой области головы, по структуре они бывают простые и сложные. Главными органами осязания и обоняния являются усики, которые находятся между глазами или впереди них. На поверхности таких усиков расположено огромное число невидимых невооруженным глазом органов чувств. Органы поглощения пищи бывает двух видов: с грызущим ротовым аппаратом и с хоботком.

Как известно, насекомые имеют немаловажное значение в окружающей среде. Полезные свойства насекомых дают необходимые и полезные продукты, а также сырье (мед, шелк, воск). Большинство насекомых, например, божьи коровки, наездники и многие другие, искореняют вредителей сельского хозяйства. Опыление цветов происходит с помощью насекомых. Млекопитающие, птицы, а также многие другие животные питаются исключительно насекомыми, личинки жучков способствуют формированию эдафонического слоя. Однако определенные виды насекомых являются вредителями, так как они наносят большой вред сельскохозяйственным, лесным и декоративным растениям. Также они являются переносчиками возбудителей различных опасных болезней не только людей, но и животных.



Что еще почитать