Методы и средства измерений физических величин. Кратные и дольные единицы

Измерение физической величины - совокупность операций по применению технического средства, хранящего единицу физической величины, обеспечивающих нахождение соотношения (в явном или неявном виде) измеряемой величины с ее единицей и получение значения этой величины .

В простейшем случае, прикладывая линейку с делениями к какой-либо детали, по сути сравнивают ее размер с единицей, хранимой линейкой, и, произведя отсчет, получают значение величины (длины, высоты, толщины и других параметров детали). С помощью измерительного прибора сравнивают размер величины, преобразованной в перемещение указателя, с единицей, хранимой шкалой этого прибора, и проводят отсчет.

Определение понятия "измерение" удовлетворяет общему уравнению измерений, что имеет существенное значение в деле упорядочения системы понятий в метрологии. В нем учтена техническая сторона (совокупность операций), раскрыта метрологическая суть измерений (сравнение с единицей) и показан гносеологический аспект (получение значения величины).

Виды измерений

Область измерений - совокупность измерений физических величин, свойственных какой-либо области науки или техники и выделяющихся своей спецификой. Примечание - Выделяют ряд областей измерений: механические, магнитные, акустические, измерения ионизирующих излучений и др.

Вид измерений - часть области измерений, имеющая свои особенности и отличающаяся однородностью измеряемых величин. Пример - В области электрических и магнитных измерений могут быть выделены как виды измерений: измерения электрического сопротивления, электродвижущей силы, электрического напряжения, магнитной индукции и др.

Существует несколько видов измерений.

По характеру зависимости измеряемой величины от времени измерения разделяются на:

статические измерения;

динамические измерения.

По способу получения результатов измерений их разделяют на:

косвенные;

совокупные;

совместные.

По условиям, определяющим точность результата, измерения делятся на:

метрологические измерения;

контрольно-поверочные измерения;

технические измерения.

По способу выражения результатов различают:

абсолютные измерения;

относительные измерения.

По характеристике средства измерения различают:

равноточные измерения;

неравноточные измерения.

По числу измерений в ряду измерений:

однократные измерения;

многократные измерения.

Измерения различают по способу получения информации, по характеру изменений измеряемой величины в процессе измерений, по количеству измерительной информации, по отношению к основным единицам.

По способу получения информации измерения разделяют на прямые, косвенные, совокупные и совместные.

Прямые измерения - это непосредственное сравнение физической величины с ее мерой. Например, при определении длины предмета линейкой происходит сравнение искомой величины (количественного выражения значения длины) с мерой, т. е. линейкой.

Косвенные измерения - отличаются от прямых тем, что искомое значение величины устанавливают по результатам прямых измерений таких величин, которые связаны с искомой определенной зависимостью. Так, если измерить силу тока амперметром, а напряжение вольтметром, то по известной функциональной взаимосвязи всех трех величин можно рассчитать мощность электрической цепи.

Совокупные измерения - сопряжены с решением системы уравнений, составляемых по результатам одновременных измерений нескольких однородных величин. Решение системы уравнений дает возможность вычислить искомую величину.

Совместные измерения - это измерения двух или более неоднородных физических величин для определения зависимости между ними.

Совокупные и совместные измерения часто применяют в измерениях различных параметров и характеристик в области электротехники.

По характеру изменения измеряемой величины в процессе измерений бывают статистические, динамические и статические измерения.

Статистические измерения связаны с определением характеристик случайных процессов, звуковых сигналов, уровня шумов и т. д. Статические измерения имеют место тогда, когда измеряемая величина практически постоянна.

Динамические измерения связаны с такими величинами, которые в процессе измерений претерпевают те или иные изменения. Статические и динамические измерения в идеальном виде на практике редки.

По количеству измерительной информации различают однократные и многократные измерения.

Однократные измерения - это одно измерение одной величины, т. е. число измерений равно числу измеряемых величин. Практическое применение такого вида измерений всегда сопряжено с большими погрешностями, поэтому следует проводить не менее трех однократных измерений и находить конечный результат как среднее арифметическое значение.

Многократные измерения характеризуются превышением числа измерений количества измеряемых величин. Преимущество многократных измерений - в значительном снижении влияний случайных факторов на погрешность измерения. измерение метрологический шкала

По назначению СИ делят на следующие группы:

  • меры;
  • измерительные преобразователи;
  • измерительные приборы;
  • измерительные установки;
  • измерительные системы.

Мерой называетсяСИ, предназначенное для воспроизведения и (или) хранения физической величиныодного или нескольких заданных размеров, значения которых выражены в установленныхединицах и известны с необходимой точностью.

Меры бывают:

Однозначные - воспроизводящие физическую величину одного размера(гиря).

Многозначные - воспроизводящие ряд одноименных величин различногоразмера (измерительная линейка).

Наборы мер - комплект мер, применяемых не только по отдельности,но и в различных сочетаниях с целью воспроизведения ряда одноименных величинразличного размера (набор гирь, набор концевых мер).

Магазины мер - набор мер, объединенных в одно конструктивноецелое, со специальными переключателями, связанными с отсчетным устройством.

Штриховые меры – это меры, размер которыхопределяется расстоянием между осями двух измерительных штрихов.

Концевые меры – это меры, размер которыхопределяется расстоянием между двумя плоскими взаимно параллельными гранямиметаллического параллелепипеда.

Стандартные образцы представляют собой меру для воспроизведения единицывеличины, характеризующей свойства или состав веществ и материалов(например,образцы твердости, шероховатости, образцы стали с аттестованным содержанием химическихэлементов).

Образцовые вещества - это меры, представляющие собой вещества сизвестными свойствами, воспроизводимыми при соблюдении условий приготовления,указанных в утвержденной спецификации («чистая» вода, «чистые» газы, «чистые»металлы).

Измерительный преобразователь - это СИ, служащее для выработки измерительной информациив форме, удобной для передачи на расстояние, хранения, обработки, но неподдающейся непосредственному восприятию наблюдателя.

Измерительные преобразователи классифицируются по ряду признаков.

По местонахождению в измерительной цепи преобразователи делятся на первичные и промежуточные. Если входной величиной преобразователя является измеряемая физическая величина, то измерительный преобразователь называется первичным. Конструктивно обособленный первичный преобразователь, от которого поступают измерительные сигналы, называется датчиком. Датчик может быть вынесен на значительное расстояние от средства измерений, принимающего его сигналы. Промежуточные преобразователи располагаются в измерительной цепи после первичного.

По виду входных и выходных величин измерительные преобразователи делятся:

  • аналоговые, преобразующие одну аналоговую величину в другую аналоговую величину;
  • на аналого-цифровые (АЦП), предназначенные для преобразования аналогового измерительного сигнала в цифровой код;
  • цифроаналоговые (ЦАП), предназначенные для преобразования цифрового кода в аналоговую величину.

Измерительный преобразователь называется передающим, если он предназначен для дистанционной передачи сигнала измерительной информации. Примерами могут служить индуктивный или пневматический передающие преобразователи. Измерительный преобразователь, предназначенный для изменения величины в заданное число раз, называется масштабным(например, измерительный трансформатор тока, делитель напряжения, измерительный усилитель).

Измерительный прибор - это СИ, предназначенное для выработки сигнала измерительной информации в форме, доступной для восприятия наблюдателя.

Измерительные приборы представляют собой самую многочисленную группу СИ и классифицируются по различным признакам. Наиболее общими являются классификации по типу структурной схемы и способу выдачи измерительной информации.

По типу структурной схемы приборы подразделяются на приборы прямого действия и приборы сравнения.

В приборах прямого действия предусмотрено одно или несколько преобразований сигналов измерительной информации X в выходную величину Y в одном направлении от входа к выходу, т.е. без применения обратной связи. Примерами приборов прямого действия могут служить манометры, ртутно-стеклянные термометры, амперметры и др.

Приборы сравнения - это измерительные приборы, предназначенные для непосредственного сравнения измеряемой величины X с величиной X 0, и разностная величина DX = X - X 0 используется для получения результата измерения. Примерами приборов сравнения являются равноплечие весы, электроизмерительный потенциометр (компенсатор), компаратор для линейных мер и др. В приборах сравнения мера присутствует в процессе каждого измерения.

По способу выдачи измерительной информации измерительные приборы подразделяются на показывающие и регистрирующие.

Показывающие приборы позволяют осуществить отсчитывание показаний; регистрирующие - отсчитывание, а также регистрацию измеряемой величины либо в функции времени, либо в функции другой величины.

К показывающим приборам относятся аналоговые и цифровые приборы.

Отсчетные устройства аналоговых приборов состоят из шкалы и указателя - стрелки, показания этих приборов являются непрерывной функцией измеряемой величины.

Шкала средств измерений - часть показывающего устройства СИ, представляющая собой упорядоченный ряд отметок вместе со связанной с ними нумерацией. Отметка шкалы - это знак на шкале СИ (черточка, зубец, точка и т.д.), соответствующий некоторому значению физической величины. Для цифровых шкал сами числа являются эквивалентами отметок шкалы.

Цена деления шкалы -это разность значений величины, соответствующих двум соседним отметкам шкалы СИ. Отметки наносятся на шкалу при градуировке прибора, т.е. при подаче на его вход сигнала с выхода образцовой многозначной меры. У части отметок шкалы проставляются числовые значения величины, подаваемой с выхода меры. Эти отметки становятся числовыми.

Шкала СИ имеет начальное и конечное значения. Они соответствуют наименьшему и наибольшему значениям измеряемой величины, которые могут быть отсчитаны по шкале СИ. При измерении с показывающего устройства считывается показание. Каждое СИ характеризуется диапазоном показаний и диапазоном измерений. Диапазоном показаний называется область значений шкалы СИ, ограниченная ее начальным и конечным делениями. Диапазоном измерений называется область значений физической величины (ФВ), в пределах которой нормированы допускаемые пределы погрешности СИ. Значения величины, ограничивающие диапазон снизу и сверху (слева и справа), называются соответственно нижним и верхним пределами измерений. Диапазон измерений всегда меньше или равен диапазону показаний.

Измерительная установка - это совокупность функционально-объединенных средств измерений (мер, измерительных преобразователей, измерительных приборов), предназначенных для выработки сигналов измерительной информации и расположенных компактно.

Измерительные установки применяются в лабораториях для научных исследований, для контроля качества материалов.

Измерительная установка - совокупность измерительных преобразователей, измерительных приборов и вспомогательных устройств, соединенных между собой каналами связи, предназначенная для выработки информации, удобной для автоматической обработки, передачи и использования в системах управления.

Все СИ по выполняемым метрологическим функциям делят на эталоны, рабочие эталоны и рабочие СИ.

Эталон единицы физической величины - это СИ (или комплекс СИ), обеспечивающее воспроизведение и хранение единицы с целью передачи ее размера нижестоящим по поверочной схеме средствам измерений, официально утвержденное в установленном порядке. Рабочий эталон - это СИ, служащее для поверки или калибровки по ним других средств измерения и утвержденное в качестве рабочего эталона.

Поверка - это определение метрологическим органом погрешности средств измерения и установление его пригодности к применению.

Рабочие средства измерения - это СИ, применяемые в технических измерениях.

Поверочная схема - это утвержденный в установленном порядке документ, устанавливающий средства, методы и точность передачи размера единиц от эталона к рабочим СИ. Главной частью поверочной схемы является метрологическая цепь передачи размеров единицы от первичного эталона рабочим средством измерения.

Методы измерения.

Методы измерения (МИ) – способ получения результата измерений путем использования принципов и средств измерений.

МИ подразделяются на:

· Метод непосредственной оценки – значение измеряемой величины снимается непосредственно по отсчетному устройству измерительного прибора прямого действия.

Преимущество – быстрота измерений, обусловливающая незаменимость для практического применения. Недостаток – ограниченная точность.

· Метод сравнения с мерой – измеряемая величина сравнивается с величиной, воспроизводимой мерой. Пример: измерение длины линейкой.

Преимущество – большая точность измерения, чем при методе непосредственной оценки. Недостаток – большие затраты времени на подбор мер.

· Метод противоставления – измеряемая величина и величина, воспроизводимая мерой, единовременно действует на прибор сравнения, с помощью которого устанавливают соотношение между этими величинами.

Например, взвешивание на равноплечных весах, при котором измеряется масса, определяется как сумма массы гирь, ее уравновешивающих, и показаний по шкале весов.

Преимущество – уменьшение воздействия на результаты измерения факторов, влияющих на искажение сигналов измерительной информации. Недостаток – увеличение времени взвешивания.

· Дифференциальный (разностный) метод – характеризуется разностью измеряемой и известной (воспроизводимой мерой) величинами. Например, измерение путем сравнения с рабочим эталоном на компаторе, выполняемые при поверке мер длины.

Преимущество - получение результатов с высокой точностью, даже при применении относительно грубых средств для измерения разности.

· Нулевой метод – метод сравнения с мерой, в которой результирующий эффект воздействия на прибор сравнения доводят до нуля.

· Метод совпадения – метод сравнения с мерой, в которой разность между значениями искомой и воспроизводимой мерой величин измеряют, используя совпадение отметок шкал или периодических сигналов.

Преимущество – метод позволяет существенно увеличить точность сравнения с мерой. Недостаток – затраты на приобретение более сложных СрИзм, необходимость наличия профессиональных навыков у оператора.

· Метод замещения – основан на сравнении с мерой, при котором измеряемую величину замещают известной величиной, воспроизводимой мерой, сохраняя все условия неизменными. Например, взвешивание с поочередным помещением измеряемой массы и гирь на одну и ту же чашку весов.

Преимущества – погрешность измерений мала, так как определяется в основном погрешностью меры и зоной нечувствительности прибора (ноль – индикатор). Недостаток – необходимость применения многозначных мер.

· Косвенный метод измерения – измерение физической величины одного наименования, связанной с другой искомой величиной, определенной функциональной зависимостью, с последующим расчетом путем решения управления. Косвенные методы широко применяются при химических методах испытания.

Преимущества – возможность измерения величин, для которых отсутствуют методы непосредственной оценки или они не дают достоверных результатов или связаны со значительными затратами. Недостатки – повышенные затраты времени и средств на измерение.

Физические венличины. Единицы физических величин

Широкое развитие и распространение методов и средств метрологии обусловило создание целых систем единиц измерений государственных и международных организаций. В настоящий момент всеобщей глобализации роль метрологии и сложность задач значительно возрастает. Каждую качественную особенность физического объекта называют физической величиной (длина, масса, скорость). Физическая величина имеет определенный размер, который выражается через единицу измерения. Среди физических величин различают основные и преобразованные из основных. Обе эти физические величины образуют систему единиц. В разное время существовали разные системы единиц измерения. Система МКС – метр, килограмм, секунда. Система СГС включала сантиметр, грамм, секунда и т.д. На основе их была построена Международная система единиц (СИ), котороя была принята на XI Международной конференции по мерам и весам в 1960 г для введения единообразия в единицах измерения во всем мире.

В СИ установлены семь основных единиц, используя которые можно измерять все механические, электрические, магнитные, акустические, световые и химические параметры, а также характеристики ионизирующих излучений. Основными единицами СИ являются:

метр (м) – для измерения длины;

килограмм (кг) – для измерения массы;

секунда (с) – для измерения времени;

ампер (А) – для измерения силы электрического тока;

кельвин (К) – для измерения термодинамической температуры;

моль (моль) – для измерения количества вещества;

кандела (кд) – для измерения силы света.

В СИ принято новое определение единицы длины – метра. До введения СИ в качестве международного и национальных эталонов метра использовали штриховые меры, изготовленные из платиново-иридиевого сплава и имеющие в поперечном сечении Х-образную форму. Метр определили при температуре 20 о С между осями двух средних штрихов меры с точностью ±0,1 мкм.

В новой системе единиц 1 м выражен в длинах световых волн атома криптона, т. е. связан с природной величиной. Теперь метр – это длина, равная 1 650 763,73 длин волн в вакууме излучения, соответствующего оранжевой линии спектра криптона-86. При новом эталоне длина 1 м воспроизводится сейчас с погрешностью 0,002 мкм, которая меньше погрешности старого искусственного эталона метра в 50 раз.

Метод измерений – прием или совокупность приемов сравнения измеряемой физической величины и ее единицы в соответствии с реализованным принципом измерений.

Метод измерений обычно обусловлен устройством средств измерений. Различают несколько основных методов измерений: непосредственной оценки, сравнения с мерой, дифференциальный, или разностный, нулевой, контактный и бесконтактный.


Измерительное средство и приемы его использования в совокупности образуют метод измерения. По способу получения значений измеряемых величин различают два основных метода измерений: метод непосредственной оценки и метод сравнения с мерой.

Метод непосредственной оценки – метод измерения, при котором значение величины определяют непосредственно по отсчетному устройству измерительного прибора прямого действия.

Например, измеряя длину с помощью линейки, размеры деталей – микрометром, штангенциркулем, получили значение размера

Рисунок 7.1 – Схема измерений методом сравнения с мерой

Метод сравнения с мерой – метод измерения, при котором измеряемую величину сравнивают с величиной, воспроизводимой мерой. Например, для измерения высоты L детали 1 (рис.7.1) миниметр 2 закрепляют в стойке. Стрелку миниметра устанавливают на нуль по какому-либо образцу (набору концевых мер 3), имеющему высоту N, равную номинальной высоте L измеряемой детали. Затем приступают к измерению партий деталей. О точности размеров L судят по отклонению ±∆ стрелки миниметра относительно нулевого положения.

В зависимости от взаимосвязи показаний прибора с измеряемой физической величиной измерения подразделяют на прямые и косвенные, абсолютные и относительные.

При прямом измерении искомое значение величины находят непосредственно в процессе замеров, например измерение угла угломером, диаметра – штангенциркулем, массы – на циферблатных весах.

При косвенном измерении значение величины определяют на основании зависимости между этой величиной и величинами, подвергаемыми прямым измерениям, например определение среднего диаметра резьбы с помощью трех проволочек на вертикальном длинномере, угла - с помощью синусной линейки и т. д.

При измерении линейных величин, независимо от рассмотренных методов, различают контактный и бесконтактный методы измерений.

Контактный метод осуществляется путем контакта между измерительными поверхностями инструмента или прибора и проверяемой деталью. Недостаток его – необходимость определенного усилия при измерении, что вызывает дополнительные погрешности (например, измерения штангенциркулем, микрометром, рычажно-механическими приборами).

Бесконтактный метод лишен недостатка контактного, поскольку в процессе измерения нет контакта между средством контроля и изделием. Это проверка на проекторах, микроскопах, с помощью пневматических приборов.

Измерение поверхностей деталей, имеющих сложную геометрическую форму (резьбы, шлицевые соединения), может быть произведено либо поэлементным, либо комплексным методом.

Поэлементным методом, например, производится проверка резьбы среднего диаметра – методом трех проволочек, наружного диаметра – микрометром, угла профиля – на универсальном микроскопе.

Комплексным методом пользуются при контроле резьбы с помощью резьбовых пробок и колец на свинчиваемость, одновременно проверяют шаг, угол профиля и средний диаметр резьбы.

Измерительные средства (приборы) классифицируют по назначению, конструктивно-функциональным признакам и технологическим особенностям изготовления. На заводах специализированные цехи и участки изготавливают следующие группы измерительных средств.

1. Оптические приборы:

а) приборы для измерения длин и углов – длинномеры, профилометры, сферометры, инструментальные и универсальные измерительные микроскопы, линейные измерительные, машины, оптические делительные головки, гониометры,

рефрактометры, автоколлимационные трубы, катетометры и т. д.;

б) микроскопы (бинокулярные, интерференционные, биологические и др.);

в) наблюдательные приборы – галилеевские и призменные бинокли, стереотрубы, перископы;

г) геодезические приборы – нивелиры, теодолиты, светодальномеры;

д) призменные и дифракционные спектральные приборы –микрофотометры, интерферометры, спектропроекторы.

2. Рычажно-оптические приборы: оптиметры, ультраоптиметры и др.

3. Рычажно-механические приборы:

а) собственно рычажные (миниметры и др.);

б) зубчатые (индикаторы часового типа и др.);

в) рычажно-зубчатые (микрометры и др.);

г) рычажно-винтовые (индикатор-микрометр);

д) с пружинной передачей (микрокаторы и др.).

4. Пневматические приборы с манометром и ротаметром.

5. Механические приборы:

а) штриховые, снабженные нониусом (штангенинструменты и универсальные угломеры);

б) микрометрические, основанные на применении винтовой передачи (микрометры, микрометрические нутромеры, глубиномеры, и др.).

6. Электрифицированные приборы (индуктивные, емкостные, фотоэлектрические и т. д.).

7. Автоматические приборы: контрольные и контрольно-сортировочные автоматы, приборы активного контроля и др.

Вид средств измерений – это совокупность средств измерений, предназначенных для измерений данного вида физической величины.

Вид средств измерений может включать несколько типов. Например, амперметры и вольтметры (вообще) являются видами средств измерений соответственно силы электрического тока и напряжения.

Отсчетное устройство показывающего прибора может иметь шкалу и указатель. Указатель выполняется в виде стрелки, светового луча и т. д. В настоящее время широкое применение получают отсчетные устройства с цифровой индикацией. Шкала представляет собой совокупность отметок и проставленных у некоторых из них чисел отсчета или других символов, соответствующих ряду последовательных значений величины. Промежуток между двумя соседними отметками шкалы называется делением шкалы.

Интервал деления шкалы – расстояние между двумя соседними отметками шкалы. У большинства измерительных средств интервал деления составляет от 1 до 2,5 мм.

Рисунок 7.2 – Области значений шкалы

Цена деления шкалы – разность значений величин, соответствующих двум соседним отметкам шкалы. Например (см. рис), у индикатора цена деления 0,002 мм.

Начальное и конечное значения шкалы (предел измерений) – соответственно наименьшее и наибольшее значения измеряемой величины, указанные на шкале, характеризующие возможности шкалы измерительного средства и определяющие диапазон показаний.

1.5 Погрешность измерения и её источники

При анализе измерении сравнивают истинные значения физических величин с результатами измерений. Отклонение ∆ результата измерения X от истинного значения Q измеряемой величины называют погрешностью измерения:

∆=Х -Q.

Погрешности измерений обычно классифицируют по причине их возникновения и по виду погрешностей. В зависимости от причин возникновения выделяют следующие погрешности измерений.

Погрешность метода – это составляющая погрешности измерения, являющаяся следствием несовершенства метода измерений. Суммарная погрешность метода измерения определяется совокупностью погрешностей отдельных его составляющих (показаний прибора, концевых мер, изменения температуры и т. п.).

Погрешность отсчета – составляющая погрешности измерения, являющаяся следствием недостаточно точного отсчета показаний средства измерений и зависящая от индивидуальных способностей наблюдателя.

Инструментальная погрешность – составляющая погрешности измерения, зависящая от погрешностей применяемых средств измерений. Различают основную и дополнительную погрешности средства измерений. За основную погрешность принимают погрешность средства измерений, используемого в нормальных условиях. Дополнительная погрешность складывается из дополнительных погрешностей измерительного преобразователя и меры, вызванных отклонением от нормальных условий.

Если температура проверяемого изделия будет отличаться от температуры, при которой ведется контроль, то это вызовет погрешности, являющиеся результатом теплового расширения. Во избежание появления их все измерения должны проводиться при нормальной температуре (+20°С).

Неточность установки детали при контроле и погрешности установки прибора также влияют на точность измерения. Например, штангенциркуль при измерении должен устанавливаться перпендикулярно к измеряемой поверхности. Тем не менее, в процессе замера могут быть перекосы, что приводит к погрешности измерения.

К перечисленным погрешностям можно добавить ошибки, возникающие при отсчете размера исполнителем вследствие его субъективных данных, ошибки от не плотности контакта между измерительными поверхностями и изделием.

Все погрешности измерения подразделяют по виду на систематические, случайные и грубые.

Под систематическими понимают погрешности, постоянные или закономерно изменяющиеся при повторных измерениях одной и той же величины. Случайные погрешности – составляющие погрешности измерения, изменяющиеся случайным образом при повторных измерениях одной и той же величины. К грубым относятся случайные погрешности, значительно превосходящие погрешности, ожидаемые при данных условиях измерения (например, неправильный отсчет по шкале, толчки и удары прибора).

Калибровка – установление метрологических характеристик средств измерительной техники, на которые не распространяется государственный метрологический надзор; калибровка производится калибровочными лабораториями.

Порог чувствительности (реагирования) – это наименьший прирост входной величины, который обуславливает заметное изменение выходной величины.

Элементарная погрешность – такая составляющая погрешности, которую в заданном анализе нет необходимости дальше расчленять на составляющие. Универсальных методов выявления систематических ошибок нет. Поэтому применяют разные способы их уменьшения или исключения. Грубые ошибки результатов измерения исключаются с помощью критерия аномальных результатов за которые принимаю интервал относительно центра распределения в долях среднеквадратического отклонения. Обычно, если значение измерения больше 3-х σ, то такое отклонение относят к аномальным.

Для обеспечения метрологического единства измерений производится метрологическая аттестация средств измерительной техники в измерительных лабораториях.

Поверка – установление пригодности средства измерений к применению на основании соответствия экспериментально определяемых метрологических характеристик и контроля установленным требованиям.

Основной метрологической характеристикой средства измерений, определяемой при поверке, является его погрешность. Как правило, она находится на основании сравнения поверяемого средства измерений с образцовым средством измерений или эталоном, т. е. с более точным средством, предназначенным для проведения поверки.

Различают поверки: государственную и ведомственную, периодическую и независимую, внеочередную и инспекционную, комплексную, поэлементную и др. Поверка выполняется метрологическими службами, которым дано на это право в установленном порядке. Поверку проводят специально обученные специалисты, имеющие удостоверение на право ее проведения.

Результаты поверки средств измерений, признанных годными к применению, оформляются выдачей свидетельств о поверке, нанесением поверительного клейма и т. д. Поверке подлежат все средства измерений, применяемые в народном хозяйстве.

На предприятиях основным средством сохранения мер длины являются концевые меры. Все цеховые средства измерений подлежат поверке в контрольно-измерительных лабораториях образцовыми средствами измерений.

Средство измерений (СИ) – техническое средство, предназначенное для измерений, имеющее нормированные метрологические характеристики, воспроизводящее или хранящее единицу физической величины, размер которой принимают неизменной в течение известного интервала времени.

Приведенное определение выражает суть средства измерений, которое, во-первых, хранит или воспроизводит единицу, во-вторых, эта единица неизменна. Эти важнейшие факторы и обуславливают возможность проведения измерений, т.е. делают техническое средство именно средством измерений. Этим средства измерений отличаются от других технических устройств. К средствам измерений относятся меры, измерительные: преобразователи, приборы, установки и системы.

Мера физической величины – средство измерений, предназначенное для воспроизведения и (или) хранения физической величины одного или нескольких заданных размеров, значения которых выражены в установленных единицах и известны с необходимой точностью. Примеры мер: гири, измерительные резисторы, концевые меры длины, радионуклидные источники и др. Меры, воспроизводящие физические величины лишь одного размера, называются однозначными (гиря), нескольких размеров – многозначные (миллиметровая линейка – позволяет выражать длину как в мм, так и в см). Кроме того, существуют наборы и магазины мер, например, магазин емкостей или индуктивностей. При измерениях с использованием мер сравнивают измеряемые величины с известными величинами, воспроизво-димыми мерами. Сравнение осуществляется разными путями, наиболее распространенным средством сравнения является компаратор, предназначенный для сличения мер однородных величин. Примером компаратора являются рычажные весы. К мерам относятся стандартные образцы и образцовое вещество, которые представляют собой специально оформленные тела или пробы вещества определенного и строго регламентированного содержания, одно из свойств которых является величиной с известным значением. Например, образцы твердости, шероховатости.

Измерительный преобразователь (ИП) - техническое средство с нормативными метрологическими характеристиками, служащее для преобразования измеряемой величины в другую величину или измерительный сигнал, удобный для обработки, хранения, индикации или передачи. Измерительная информация на выходе ИП, как правило, недоступна для непосредственного восприятия наблюдателем. Хотя ИП являются конструктивно обособленными элементами, они чаще всего входят в качестве составных частей в более сложные измерительные приборы или установки и самостоятельного значения при проведении измерений не имеют.

Преобразуемая величина, поступающая на измерительный преобразователь, называется входной, а результат преобразования – выходной величиной. Соотношение между ними задается функцией преобразования, которая является его основной метрологической характеристикой. Для непосредственного воспроизведения измеряемой величины служат первичные преобразователи, на которые непосредственно воздействует измеряемая величина и в которых происходит трансформация измеряемой величины для ее дальнейшего преобразования или индикации. Примером первичного преобразователя является термопара в цепи термоэлектрического термометра. Одним из видов первичного преобразователя является датчик – конструктивно обособленный первичный преобразователь, от которого поступают измерительные сигналы (он «дает» информацию). Датчик может быть вынесен на значительное расстояние от средства измерений, принимающего его сигналы. Например, датчик метеорологического зонда. В области измерений ионизирующих излучений датчиком часто называют детектор.

По характеру преобразования ИП могут быть аналоговыми, аналого-цифровыми (АЦП), цифро-аналоговыми (ЦАП), то есть, преобразующими цифровой сигнал в аналоговый или наоборот. При аналоговой форме представления сигнал может принимать непрерывное множество значений, то есть, он является непрерывной функцией измеряемой величины. В цифровой (дискретной) форме он представляется в виде цифровых групп или чисел. Приме-рами ИП являются измерительный трансформатор тока, термометры сопротивлений.

Измерительный прибор – средство измерений, предназначенное для получения значений измеряемой физической величины в установленном диапазоне. Измерительный прибор представляет измерительную информацию в форме, доступной для непосредственного восприятия наблюдателем.

По способу индикации различают показывающие и регистрирующие приборы. Регистрация может осуществляться в виде непрерывной записи измеряемой величины или путем печатания показаний прибора в цифровой форме.

Приборы прямого действия отображают измеряемую величину на показывающем устройстве, имеющем градуировку в единицах этой величины. Например, амперметры, термометры.

Приборы сравнения предназначены для сравнения измеряемых величин с величинами, значения которых известны. Такие приборы используются для измерений с большей точностью.

По действию измерительные приборы разделяют на интегрирующие и суммирующие, аналоговые и цифровые, самопишущие и печатающие.
Измерительная установка и система – совокупность функционально объединенных мер, измерительных приборов и других устройств, предназначенных для измерений одной или нескольких величин и расположенная в одном месте (установка) или в разных местах объекта измерений (система). Измерительные системы, как правило, являются автоматизированными и по существу они обеспечивают автоматизацию процессов измерения, обработки и представления результатов измерений. Примером измерительных систем являются автоматизированные системы радиационного контроля (АСРК) на различных ядерно-физических установках, таких, например, как ядерные реакторы или ускорители заряженных частиц.

По метрологическому назначению средства измерений делятся на рабочие и эталоны.

Рабочее СИ - средство измерений, предназначенное для измерений, не связанное с передачей размера единицы другим средствам измерений. Рабочее средство измерений может использоваться и в качестве индикатора. Индикатор – техническое средство или вещество, предназначенное для установления наличия какой-либо физической величины или превышения уровня ее порогового значения. Индикатор не имеет нормированных метрологических характеристик. Примерами индикаторов являются осциллограф, лакмусовая бумага и т.д.

Эталон - средство измерений, предназначенное для воспроизведения и (или) хранения единицы и передачи ее размера другим средствам измерений. Среди них можно выделить рабочие эталоны разных разрядов, которые ранее назывались образцовыми средствами измерений.

Классификация средств измерений проводится и по другим различным признакам. Например, по видам измеряемых величин, по виду шкалы (с равномерной или неравномерной шкалой), по связи с объектом измерения (контактные или бесконтактные).

Федеральный закон «Об обеспечении единства измерений» от 27.04.1993 осуществляет регулирование отношений, связанных с обеспечением единства измерений в Российской Федерации, в соответствии с Конституцией РФ.

Основные статьи Закона устанавливают:

  • основные понятия, применяемые в Законе;
  • организационную структуру государственного управления обеспечением единства измерений;
  • нормативные документы по обеспечению единства измерений;
  • единицы величин и государственные эталоны единиц величин;
  • средства и методики измерений.

Закон определяет Государственную метрологическую службу и другие службы обеспечения единства измерений, метрологические службы государственных органов управления и юридических лиц, а также виды и сферы распределения государственного метрологического контроля и надзора.

Отдельные статьи Закона содержат положения по калибровке и сертификации средств измерений и устанавливают виды ответственности за нарушение Закона.

Становление рыночных отношений наложило отпечаток на статью Закона, которая определяет основы деятельности метрологических служб государственных органов управления и юридических лиц. Вопросы деятельности структурных подразделений метрологических служб на предприятиях стимулируются чисто экономическими методами.

В тех сферах, которые не контролируются государственными органами, создается Российская система калибровки , также направленная на обеспечение единства измерений. Госстандарт РФ назначил центральным органом Российской системы калибровки Управление технической политики в области метрологии.

Положение о лицензировании метрологической деятельности направлено на защиту прав потребителей и охватывает сферы, подлежащие государственному метрологическому контролю и надзору. Право выдачи лицензии предоставлено исключительно органам Государственной метрологической службы.

Закон создает условия для взаимодействия с международной и национальными системами измерений зарубежных стран. Это прежде всего необходимо для взаимного признания результатов испытаний, калибровки и сертификации, а также для использования мирового опыта и тенденций в современной метрологии.

Вопросами теории и практики обеспечения единства измерений занимается метрология. Метрология - наука об измерениях, методах и средствах обеспечения их единства и способах достижения требуемой точности.

Метрология имеет большое значение для прогресса естественных и технических наук, так как повышение точности измерений - одно из средств совершенствования путей познания природы человеком, открытий и практического применения точных знаний.

Для обеспечения научно-технического прогресса метрология должна опережать в своем развитии другие области науки и техники, ибо для каждой из них точные измерения являются одним из основных путей их совершенствования.

Основными задачами метрологии являются:

  • установление единиц физических величин, государственных эталонов и образцовых средств измерений;
  • разработка теории, методов и средств измерений и контроля; обеспечение единства измерений;
  • разработка методов оценки погрешностей, состояния средств измерения и контроля;
  • разработка методик передачи размеров единиц от эталонов или образцовых средств измерений рабочим средствам измерений.

Измерением называется совокупность операций по применению технического средства, хранящего единицу физической величины, обеспечивающих нахождение соотношения измеряемой величины с ее единицей (сравнение) и получение значения этой величины. Измерения должны выполняться в общепринятых единицах.

Метрологическое обеспечение (МО) - установление и применение научных и организационных основ, технических средств, правил и норм, необходимых для достижения единства и требуемой точности измерений.

В перечень основных задач метрологического обеспечения в технике входят:

  • определение путей наиболее эффективного использования научных и технических достижений в области метрологии;
  • стандартизация основных правил, положений, требований и норм метрологического обеспечения;
  • согласование приборов и методов измерения, проведение совместных измерений с помощью отечественной и зарубежной аппаратуры (интеркалибрация);
  • определение рациональной номенклатуры измеряемых параметров, установление оптимальных норм точности измерений, порядка выбора и назначений средств измерений;
  • организация и проведение метрологической экспертизы на стадиях разработки, производства и испытаний изделий;
  • разработка и применение прогрессивных методов измерений, методик и средств измерений;
  • автоматизация сбора, хранения и обработки измерительной информации;
  • осуществление ведомственного контроля за состоянием и применением на предприятиях отрасли образцовых, рабочих и нестандартизованных средств измерений;
  • проведение обязательных государственной или ведомственной поверок средств измерений, их ремонта;
  • обеспечение постоянной готовности к проведению измерений;
  • развитие метрологической службы отрасли и др.

Физическая величина - одно из свойств физического объекта (физической системы, явления или процесса), общее в качественном отношении для многих физических объектов, но в количественном отношении индивидуальное для каждого из них.

Единица измерения должна быть установлена для каждой из физических величин, при этом необходимо учитывать, что многие физические величины связаны между собой определенными зависимостями. Поэтому лишь часть физических величин и их единиц может определяться независимо от других. Такие величины называют основными. Производная физическая величина - физическая величина, входящая в систему физических величин и определяемая через основные физические величины этой системы.

Совокупность физических величин, образованная в соответствии с принятыми принципами, когда одни величины принимают за независимые, а другие определяют как функции независимых величин, называется системой единиц физических величин. Единица основной физической величины является основной единицей системы. Международная система единиц (система СИ; SI - от франц. Systeme International - The International System of Units) была принята XI Генеральной конференцией по мерам и весам в 1960 г.

В основу системы СИ положены семь основных и две дополнительные физические единицы. Основные единицы: метр, килограмм, секунда, ампер, кельвин, моль и кандела (табл. 1.1).

Метр - длина пути, проходимого светом в вакууме за интервал времени 1/299 792 458 секунды.

Килограмм - единица массы, определяемая как масса международного прототипа килограмма, представляющего собой цилиндр из сплава платины и иридия.

Секунда равна 9 192 631 770 периодам излучения, соответствующего энергетическому переходу между двумя уровнями сверхтонкой структуры основного состояния атома цезия-133.

Ампер - сила неизменяющегося тока, который, проходя по двум параллельным прямолинейным проводникам бесконечной длины и ничтожно малой площади кругового сечения, расположенным на расстоянии 1 м один от другого в вакууме, вызывал бы силу взаимодействия, равную 2 10“ 7 Н (ньютон) на каждом участке проводника длиной 1 м.

Таблица 1.1. Единицы Международной системы СИ

Величина

Наименование

Размерность

Наименование

Обозначение

международное

Основные единицы

килограмм

Сила электрического тока

Температура

Количество

вещества

Сила света

Дополнительные единицы

Плоский угол

Телесный угол

стерадиан

Кельвин - единица термодинамической температуры, равная 1/273,16 части термодинамической температуры тройной точки воды, т. е. температуры, при которой три фазы воды - парообразная, жидкая и твердая - находятся в динамическом равновесии.

Моль - количество вещества, содержащее столько же структурных элементов, сколько содержится в образце углерода-12 массой 0,012 кг.

Кандела - сила света в заданном направлении источника, испускающего монохроматическое излучение частотой 540 10 12 Гц, чья энергетическая сила излучения в этом направлении составляет "/ 683 Вт/ср (ср - стерадиан).

Дополнительные единицы системы СИ предназначены и используются для образования единиц угловой скорости, углового ускорения. К дополнительным физическим величинам системы СИ относят плоский и телесный углы.

Радиан {рад) - угол между двумя радиусами окружности, длина дуги которой равна этому радиусу. В практических случаях часто используют такие единицы измерения угловых величин:

градус - 1° = 2л/360 рад = 0,017453 рад;

минута - 1" = 1°/60 = 2,9088 10 4 рад;

секунда - 1" = Г/60 = 1°/3600 = 4,8481 10“ 6 рад;

радиан - 1 рад = 57°17"45" = 57,2961° = (3,4378 10 3)" = (2,0627 10 5)".

Стерадиан {ср) - телесный угол с вершиной в центре сферы, вырезающий на ее поверхности площадь, равную площади квадрата со стороной, равной радиусу сферы.

Производные единицы системы СИ образуют из основных и дополнительных единиц. Производные единицы бывают когерентными и некогерентными. Когерентной называют производную единицу величины, связанную с другими единицами системы уравнением, в котором числовой множитель - единица (например, скорость и равномерного прямолинейного движения связана с длиной пути / и временем t соотношением и = //г). Остальные производные единицы - некогерентные. В табл. 1.2 приведены основные производные единицы.

Размерность физической величины - одна из важнейших ее характеристик, которую можно определить как буквенное выражение, отражающее связь данной величины с величинами, принятыми за основные в рассматриваемой системе величин. В табл. 1.2 для величин приняты следующие размерности: для длины - Ь, массы - М, времени - Т, силы электрического тока - I. Размерности записывают прописными буквами и печатают прямым шрифтом.

Среди получивших широкое распространение внесистемных единиц отметим киловатт-час, ампер-час, градус Цельсия и т. д.

Сокращенные обозначения единиц, как международных, так и русских, названных в честь великих ученых, пишутся с заглавных букв; например ампер - А; ом - Ом; вольт - В; фарад - Ф. Для сравнения: метр - м, секунда - с, килограмм - кг.

Применение целых единиц не всегда удобно, так как в результате измерений получаются слишком большие или малые их значения. Поэтому в системе СИ установлены десятичные кратные и дольные единицы, которые образуются с помощью множителей. Десятичным множителям соответствуют приставки

Таблица 1.2. Производные единицы СИ

Величина

Наименование

Размерность

Наименование

Обозначение

международное

Энергия, работа, количество теплоты

Сила, вес

Мощность, поток энергии

Количество электричества

Электрическое напряжение, электродвижущая сила (ЭДС), потенциал

Электрическая емкость

Ь- 2 М >Т 4 1 2

Электрическое сопротивление

Ь 2 МТ- 3 1-2

Электрическая проводимость

Ь- 2 м-1Т 3 1 2

Магнитная индукция

Поток магнитной индукции

Ц 2 МТ- 2 1-1

Индуктивность, взаимная индуктивность

Ь 2 МТ- 2 1-2

(табл. 1.3), которые пишутся слитно с наименованием основной или производной единицы, например: километр (км), милливольт (мВ), мегагерц (МГц), наносекунда (нс).

Если физическая единица в целое число раз больше системной, она называется кратной единицей, например килогерц (10 3 Гц). Дольная единица физической величины - единица, меньшая системной в целое число раз, например, микрогенри (КГ 6 Гн).

Мерой физической величины или просто мерой называют средство измерений, предназначенное для воспроизведения и (или) хранения физической величины одного или нескольких заданных размеров, значения которых выражены в установленных

Таблица 1.3. Множители и приставки для образования десятичных кратных и дольных единиц СИ

Множитель

Приставка

Обозначение приставки

международное

единицах и известны с необходимой точностью. Различают следующие разновидности мер:

  • однозначная мера - мера, воспроизводящая физическую величину одного размера (например, гиря 1 кг);
  • многозначная мера - мера, воспроизводящая физическую величину разных размеров (например, штриховая мера длины);
  • набор мер - комплект мер одной и той же физической величины, но разного размера, предназначенных для применения на практике, как в отдельности, так и в различных сочетаниях (например, набор концевых мер длины);
  • магазин мер - набор мер, конструктивно объединенных в единое устройство, в котором имеются приспособления для их соединения в различных комбинациях (например, магазин электрических сопротивлений).

Электроизмерительными приборами называют средства электрических измерений, предназначенные для выработки информации о значениях измеряемой величины, в форме, доступной для непосредственного восприятия наблюдателем, например амперметр, вольтметр, ваттметр, фазометр.

Измерительными преобразователями называют средства электрических измерений, предназначенные для выработки измерительной информации в форме, удобной для передачи, дальнейшего преобразования, обработки или хранения, но не поддающейся непосредственному восприятию наблюдателем. Измерительные преобразователи можно разделить на два вида:

  • преобразователи электрических величин в электрические, например шунты, делители или усилители напряжения, трансформаторы;
  • преобразователи неэлектрических величин в электрические, например термоэлектрические термометры, терморезисторы, тензорезисторы, индуктивные и емкостные преобразователи.

Электроизмерительная установка состоит из ряда средств измерений (мер, измерительных приборов, измерительных преобразователей) и вспомогательных устройств, расположенных в одном месте. При помощи таких установок можно в ряде случаев производить более сложные и более точные измерения, чем при помощи отдельных измерительных приборов. Электроизмерительные установки широко используются, например, для поверки и градуировки электроизмерительных приборов и испытаний различных материалов, используемых в электротехнических конструкциях.

Измерительные информационные системы представляют собой совокупность средств измерений и вспомогательных устройств, соединенных между собой каналами связи. Они предназначены для автоматического получения, передачи и обработки измерительной информации от многих источников.

В зависимости от способа получения результата измерения делятся на прямые и косвенные.

Прямыми называются измерения, результат которых получается непосредственно из опытных данных. Примеры прямых измерений: измерение тока амперметром, длины детали микрометром, массы на весах.

Косвенными называются измерения, при которых искомая величина непосредственно не измеряется, а ее значение находится на основании результатов прямых измерений других физических величин, функционально связанных с искомой величиной. Например, мощность Р в цепях постоянного тока вычисляют по формуле Р= Ш, напряжение и в этом случае измеряют вольтметром, а ток / - амперметром.

В зависимости от совокупности приемов измерений все методы делятся на методы непосредственной оценки и методы сравнения.

Под методом непосредственной оценки понимают метод, по которому измеряемая величина определяется непосредственно по отсчетному устройству измерительного прибора прямого действия, т. е. прибора, осуществляющего преобразование измерительного сигнала в одном направлении (без применения обратной связи), например измерение тока амперметром. Метод непосредственной оценки прост, но отличается относительно низкой точностью.

Методом сравнения называют метод, по которому измеряемая величина сравнивается с величиной, воспроизводимой мерой. Отличительной чертой метода сравнения является непосредственное участие меры в процессе измерения, например измерение сопротивления путем сравнения его с мерой сопротивления - образцовой катушкой сопротивления, измерение массы на рычажных весах с уравновешиванием гирями. Методы сравнения обеспечивают большую точность измерения, чем методы непосредственной оценки, но это достигается за счет усложнения процесса измерения.



Что еще почитать