Строение и функциональное значение днк. Молекула ДНК человека. Как работают гены, что такое РНК, нуклеотиды, синтез белка. Типы рнк в клетке. Функции различных рнк

ДНК является универсальным источником и хранителем наследственной информации, которая записана с помощью специальной последовательности нуклеотидов, она определяет свойства всех живых организмов.

Средняя молекулярная масса нуклеотида принимается равной 345, а количество нуклеотидных остатков может достигать нескольких сот, тысяч и даже миллионов. ДНК в основной своей массе находится в ядрах клеток. Немного содержится в хлоропластах и митохондриях. Однако ДНК ядра клетки - это не одна молекула. Она состоит из множества молекул, которые распределены по разным хромосомам, их количество меняется в зависимости от организма. Это и есть особенности строения ДНК.

История открытия ДНК

Строение и функции ДНК были открыты Джеймсом Уотсоном и Френсисом Криком, им даже была вручена Нобелевская премия в 1962 году.

Но впервые обнаружил нуклеиновые кислоты швейцарский ученый Фридрих Иоганн Мишер, работавший в Германии. В 1869 году он изучал животные клетки - лейкоциты. Для их получения использовал повязки с гноем, достававшиеся ему из больниц. Из гноя Мишер вымывал лейкоциты, а из них выделял белок. В ходе этих исследований ученому удалось установить, что в лейкоцитах кроме белков имеется еще что-то, какое-то неизвестное на тот момент вещество. Оно представляло собой нитевидный или хлопьевидный осадок, который выделялся, если создать кислую среду. Осадок сразу растворялся при добавлении щелочи.

Ученый с помощью микроскопа обнаружил, что при отмывании лейкоцитов с помощью соляной кислоты от клеток остаются ядра. Тогда он сделал заключение, что в ядре есть неизвестное вещество, названное им нуклеином (слово nucleus в переводе означает ядро).

Проведя химический анализ, Мишер выяснил, что новое вещество в своем составе имеет углерод, водород, кислород и фосфор. В то время фосфорорганических соединений было известно немного, поэтому Фридрих решил, что обнаружил новый класс соединений, находящихся в ядре клетки.

Таким образом, в XIX веке было открыто существование нуклеиновых кислот. Однако в то время никто не мог даже подумать о том, какая важная роль им принадлежит.

Вещество наследственности

Строение ДНК продолжали исследовать, и в 1944 году группа бактериологов под руководством Освальда Эвери получила доказательства того, что эта молекула заслуживает серьезного внимания. Ученый на протяжении многих лет занимался изучением пневмококков, организмов, которые вызывали пневмонию или заболевание легких. Эвери проводил опыты, смешивая пневмококки, вызывающие заболевание, с теми, которые безопасны для живых организмов. Сначала болезнетворные клетки убивали, а после добавляли к ним те, которые заболеваний не вызывают.

Результаты исследований поразили всех. Были такие живые клетки, которые после взаимодействия с мертвыми научались вызывать болезнь. Ученый выяснил природу вещества, которое участвует в процессе передачи информации живым клеткам от мертвых. Молекула ДНК и оказалась этим веществом.

Строение

Итак, необходимо разобраться с тем, какое строение имеет молекула ДНК. Открытие ее структуры стало значимым событием, это привело к образованию молекулярной биологии - новой отрасли биохимии. ДНК в больших количествах находится в ядрах клеток, однако размеры и количество молекул зависят от вида организма. Установлено, что ядра клеток млекопитающих содержат много этих клеток, они распределены по хромосомам, их насчитывается 46.

Изучая строение ДНК, в 1924 году Фельген впервые установил ее локализацию. Доказательства, полученные в ходе экспериментов, показали, что ДНК находится в митохондриях (1-2%). В других местах эти молекулы могут находиться при вирусной инфекции, в базальных тельцах, а также в яйцеклетках некоторых животных. Известно, что чем сложнее организм, тем масса ДНК больше. Количество молекул, находящихся в клетке, зависит от функции и составляет обычно 1-10%. Меньше всего их находится в миоцитах (0,2%), больше - в половых клетках (60%).

Строение ДНК показало, что в хромосомах высших организмов они связаны с простыми белками - альбуминами, гистонами и прочими, которые все вместе образуют ДНП (дезоксирибонуклеопротеид). Обычно большая молекула нестойкая, и для того чтобы она оставалась целой и неизменной в ходе эволюции, создана так называемая репарирующая система, которая состоит из ферментов - лигаз и нуклеаз, отвечающих за «ремонт» молекулы.

Химическое строение ДНК

ДНК является полимером, полинуклеотидом, состоящим из огромного числа (до десятков тысяч миллионов) мононуклеотидов. Строение ДНК имеет следующий вид: мононуклеотиды содержат азотистые основания - цитозин (Ц) и тимин (Т) - из производных пиримидинов, аденин (А) и гуанин (Г) - из производных пурина. Кроме азотистых оснований, в составе молекулы человека и животных имеется 5-метилцитозин — минорное пиримидиновое основание. С фосфорной кислотой и дезоксирибозой связываются азотистые основания. Схема строения ДНК продемонстрирована ниже.

Правила Чаргаффа

Строение и биологическая роль ДНК изучались Э. Чаргаффом в 1949 году. В ходе исследований он выявил закономерности, которые наблюдаются в количественном распределении азотистых оснований:

  1. ∑Т + Ц = ∑А + Г (то есть число пиримидиновых оснований равно числу пуриновых).
  2. Всегда количество остатков аденина равно количеству остатков тимина, а количество гуанина равно цитозину.
  3. Коэффициент специфичности имеет формулу: Г+Ц/А+Т. Например, у человека он равен 1,5, у быка - 1,3.
  4. Сумма "А + Ц" равна сумме "Г + Т", то есть аденина и цитозина имеется столько же, сколько гуанина и тимина.

Модель строения ДНК

Ее создали Уотсон и Крик. Остатки фосфатов и дезоксирибоз располагаются по хребту двух закрученных спиралеобразным образом полинуклеотидных цепей. Определено, что плоскостные структуры пиримидиновых и пуриновых оснований располагаются перпендикулярно оси цепи и образуют как бы ступени лестницы в виде спирали. Установлено также, что А всегда соединяется с Т при помощи двух водородных связей, а Г прикреплено к Ц уже тремя такими же связями. Этому явлению дали название "принцип избирательности и комплементарности".

Уровни структурной организации

Изогнутая как спираль полинуклеотидная цепь - это первичная структура, которая имеет определенный качественный и количественный набор мононуклеотидов, связанных 3’,5’-фосфодиэфирной связью. Таким образом, каждая из цепей имеет 3’-конец (дезоксирибоза) и 5’-конец (фосфатный). Участки, которые содержат в себе генетическую информацию, названы структурными генами.

Двухспиральная молекула - это вторичная структура. Причем ее полинуклеотидные цепи антипараллельны и связываются водородными связями между комплементарными основаниями цепей. Установлено, что в каждом витке этой спирали содержится 10 нуклеотидных остатков, длина ее равняется 3,4 нм. Эту структуру поддерживают также Ван-дер-Ваальсовы силы взаимодействия, которые наблюдаются между основаниями одной цепи, включающие отталкивающие и притягивающие компоненты. Эти силы объясняются взаимодействием электронов в соседних атомах. Электростатическое взаимодействие также стабилизирует вторичную структуру. Оно возникает между заряженными положительно молекулами гистонов и заряженной отрицательно нитью ДНК.

Третичная структура - это намотка цепей ДНК на гистоны или суперспирализация. Описано пять видов гистонов: Н1, Н2А, Н2В, Н3, Н4.

Укладка нуклеосом в хроматин - это четвертичная структура, поэтому молекула ДНК, имеющая длину несколько сантиметров, может складываться до 5 нм.

Функции ДНК

Основными функциями ДНК являются:

  1. Хранение наследственной информации. Последовательность аминокислот, находящихся в молекуле белка, определяется порядком, в котором расположены нуклеотидные остатки в молекуле ДНК. Также в ней зашифрована вся информация о свойствах и признаках организма.
  2. ДНК способна передавать наследственную информацию следующему поколению. Это возможно из-за способности к репликации - самоудвоению. ДНК способна распадаться на две комплементарные цепочки, и на каждой из них (в соответствии с принципом комплементарности) восстанавливается исходная последовательность нуклеотидов.
  3. При помощи ДНК происходит биосинтез белков, ферментов и гормонов.

Заключение

Строение ДНК позволяет ей являться хранителем генетической информации, а также передавать ее следующим поколениям. Какие есть особенности у этой молекулы?

  1. Стабильность. Это возможно благодаря гликозидным, водородным и фосфодиэфирным связям, а также механизму репарации индуцированных и спонтанных повреждений.
  2. Возможность репликации. Этот механизм позволяет в соматических клетках сохранять диплоидное число хромосом.
  3. Существование генетического кода. При помощи процессов трансляции и транскрипции последовательность оснований, находящихся в ДНК, преобразуется в последовательность аминокислот, находящихся в полипептидной цепи.
  4. Способность к генетической рекомбинации. При этом образуются новые сочетания генов, которые сцеплены между собой.

Таким образом, строение и функции ДНК позволяют ей играть неоценимую роль в организмах живых существ. Известно, что длина 46-ти молекул ДНК, находящихся в каждой клетке человека, равна почти 2 м, а число нуклеотидных пар составляет 3,2 млрд.

МОСКВА, 25 апр — РИА Новости, Татьяна Пичугина. Ровно 65 лет назад британские ученые Джеймс Уотсон и Фрэнсис Крик опубликовали статью о расшифровке структуры ДНК, заложив основы новой науки — молекулярной биологии. Это открытие изменило очень многое в жизни человечества. РИА Новости рассказывает о свойствах молекулы ДНК и о том, почему она так важна.

Во второй половине XIX века биология была совсем молодой наукой. Ученые только приступали к исследованию клетки, а представления о наследственности, хотя и были уже сформулированы Грегором Менделем, не получили широкого признания.

Весной 1868 года молодой швейцарский врач Фридрих Мишер приехал в Университет города Тюбингена (Германия), чтобы заняться научной работой. Он намеревался узнать, из каких веществ состоит клетка. Для экспериментов выбрал лейкоциты, которые легко получить из гноя.

Отделяя ядро от протоплазмы, белков и жиров, Мишер обнаружил соединение с большим содержанием фосфора. Он назвал эту молекулу нуклеином ("нуклеус" на латыни — ядро).

Это соединение проявляло кислотные свойства, поэтому возник термин "нуклеиновая кислота". Его приставка "дезоксирибо" означает, что молекула содержит H-группы и сахара. Потом выяснилось, что на самом деле это соль, но название менять не стали.

В начале XX века ученые уже знали, что нуклеин представляет собой полимер (то есть очень длинную гибкую молекулу из повторяющихся звеньев), звенья сложены четырьмя азотистыми основаниями (аденином, тимином, гуанином и цитозином), а нуклеин содержится в хромосомах — компактных структурах, которые возникают в делящихся клетках. Их способность передавать наследственные признаки продемонстрировал американский генетик Томас Морган в опытах на дрозофилах.

Модель, объяснившая гены

А вот что делает в ядре клетки дезоксирибонуклеиновая кислота, сокращенно ДНК, долго не понимали. Считалось, что она играет какую-то структурную роль в хромосомах. Единицам наследственности — генам — приписывали белковую природу. Прорыв совершил американский исследователь Освальд Эвери, опытным путем доказавший, что генетический материал передается от бактерии к бактерии посредством ДНК.

Стало ясно, что ДНК нужно изучать. Но как? В то время ученым был доступен только рентген. Чтобы просвечивать им биологические молекулы, их приходилось кристаллизовать, а это сложно. Расшифровкой структуры белковых молекул по рентгенограммам занимались в Кавендишской лаборатории (Кембридж, Великобритания). Работавшие там молодые исследователи Джеймс Уотсон и Френсис Крик не располагали собственными экспериментальными данными по ДНК, поэтому они воспользовались рентгенограммами коллег из Королевского колледжа Мориса Уилкинса и Розалинды Франклин.

Уотсон и Крик предложили модель структуры ДНК, точно соответствующую рентгенограммам: две параллельные цепочки закручены в правую спираль. Каждая цепочка складывается произвольным набором азотистых оснований, нанизанных на остов их сахаров и фосфатов, и удерживается водородными связями, протянутыми между основаниями. Причем аденин соединяется только с тимином, а гуанин — с цитозином. Это правило называют принципом комплементарности.

Модель Уотсона и Крика объясняла четыре главных функции ДНК: репликацию генетического материала, его специфику, хранение информации в молекуле и ее способность мутировать.

Ученые опубликовали свое открытие в журнале Nature 25 апреля 1953 года. Через десять лет им вместе с Морисом Уилкинсом присудили Нобелевскую премию по биологии (Розалинда Франклин скончалась в 1958 году от рака в возрасте 37 лет).

"Теперь, более полувека спустя, можно констатировать, что открытие структуры ДНК сыграло в развитии биологии такую же роль, как в физике — открытие атомного ядра. Выяснение строения атома привело к рождению новой, квантовой физики, а открытие строения ДНК привело к рождению новой, молекулярной биологии", — пишет Максим Франк-Каменецкий, выдающийся генетик, исследователь ДНК, автор книги "Самая главная молекула".

Генетический код

Теперь оставалось узнать, как эта молекула действует. Было известно, что ДНК содержит инструкции для синтеза клеточных белков, которые выполняют всю работу в клетке. Белки — это полимеры, состоящие из повторяющихся наборов (последовательностей) аминокислот. Причем аминокислот — всего двадцать. Виды животных отличаются друг от друга набором белков в клетках, то есть разными последовательностями аминокислот. Генетика утверждала, что эти последовательности задаются генами, которые, как тогда считали, служат первокирпичиками жизни. Но что такое гены, никто в точности не представлял.

Ясность внес автор теории Большого взрыва физик Георгий Гамов, сотрудник Университета Джорджа Вашингтона (США). Основываясь на модели двухцепочечной спирали ДНК Уотсона и Крика, он предположил, что ген — это участок ДНК, то есть некая последовательность звеньев — нуклеотидов. Поскольку каждый нуклеотид — это одно из четырех азотистых оснований, то нужно просто выяснить, как четыре элемента кодируют двадцать. В этом состояла идея генетического кода.

К началу 1960-х установили, что белки синтезируются из аминокислот в рибосомах — своего рода "фабриках" внутри клетки. Чтобы приступить к синтезу белка, к ДНК приближается фермент, распознает определенный участок в начале гена, синтезирует копию гена в виде маленькой РНК (ее называют матричной), затем уже в рибосоме из аминокислот выращивается белок.

Выяснили также, что генетический код — трехбуквенный. Это значит, что одной аминокислоте соответствуют три нуклеотида. Единицу кода назвали кодоном. В рибосоме информация с мРНК считывается кодон за кодоном, последовательно. И каждому из них соответствует несколько аминокислот. Как же выглядит шифр?

На этот вопрос ответили Маршалл Ниренберг и Генрих Маттеи из США. В 1961 году они впервые доложили свои результаты на биохимическом конгрессе в Москве. К 1967-му генетический код полностью расшифровали. Он оказался универсальным для всех клеток всех организмов, что имело далеко идущие последствия для науки.

Открытие структуры ДНК и генетического кода полностью переориентировало биологические исследования. То, что у каждого индивида уникальная последовательность ДНК, кардинально изменило криминалистику. Расшифровка генома человека дала антропологам совершенно новый метод изучения эволюции нашего вида. Недавно изобретенный редактор ДНК CRISPR-Cas позволил сильно продвинуть вперед генную инженерию. По всей видимости, в этой молекуле хранится решение и самых злободневных проблем человечества: рака, генетических заболеваний, старения.

Химический состав ДНК и её макромолекулярная организация. Типы спиралей ДНК. Молекулярные механизмы рекомбинации, репликации и репарации ДНК. Понятие о нуклеазах и полимеразах. Репликация ДНК как условие передачи генетической информации потомкам. Общая характеристика процесса репликации. Действия, происходящие в вилке репликации. Репликация теломеров, теломераза. Значение недорепликации конечных фрагментов хромосом в механизме старения. Системы исправления ошибок репликации. Корректорские свойства ДНК-полимераз. Механизмы репарации поврежденной ДНК. Понятие о заболеваниях репарации ДНК. Молекулярные механизмы общей генетической рекомбинации. Сайт-специфическая рекомбинация. Генная конверсия.

В 1865г. Грегор Мендель открыл гены, а его современник Фридрих Мишер в 1869г. открыл нуклеиновые кислоты (в ядрах клеток гноя и сперматозоидов лосося). Однако долго еще эти открытия не связывали друг с другом, долго еще структуру и природу вещества наследственности не знали. Генетическая роль НК была установлена после открытия и объяснения явлений трансформации (1928, Ф.Гриффитс; 1944, О. Эвери), трансдукции (1951, Ледерберг, Циндер) и размножения бактериофагов (1951, А. Херши, М. Чейз).

Трансформация, трансдукция и размножение бактериофагов убедительно доказали генетическую роль ДНК. У РНК - содержащих вирусов (СПИДа, гепатита В, гриппа, ВТМ, лейкоза мышей и др.) эту роль выполняет РНК.

Строение нуклеиновых кислот . НК - биополимеры, участвующие в хранении и передаче генети­ческой информации. Мономеры НК - нуклеотиды, состоящие из азо­тистого основания, моносахарида и одной или нескольких фосфатных групп. В составе НК все нуклеотиды являются монофосфа­тами. Нуклеотид без фосфатной группы называется нуклеозидом. Сахар, входящий в состав НК, представляет собой D-изомер и β-аномер рибозы или 2-дезоксирибозы. Нуклеотиды, содержащие рибозу, называ­ются рибонуклеотидами и являются мономерами РНК, а нуклеотиды - производные дезоксирибозы, являются дезоксирибонуклеотидами, и из них состоит ДНК. Азотистые основания бывают двух типов: пурины - аденин, гуанин и пиримидины - цитозин, тимин, урацил. В состав РНК и ДНК входят аденин, гуанин, цитозин; урацил встречается только в РНК, а тимин только в ДНК.

В ряде случаев в НК присутствуют редко встречающиеся минор­ные нуклеотиды, такие как дигидроуридин, 4-тиоуридин, инозин и др. Разнообразие их особенно велико у тРНК. Минор­ные нуклеотиды образуются в результате химических превращений оснований НК, происходящих уже после образования полимерной цепи. Чрезвычайно распространены в РНК и ДНК различные метилированные производные: 5-метилуридин, 5-метилцитидин, l-N-метиладенозин, 2-И-метилгуанозин. У РНК объектом метилирования могут быть и 2"-гидроксигруппы остатков рибозы, что приводит к обра­зованию 2"-О-метилцитидина или 2"-О-метилгуанозина.

Рибонуклеотидные и дезоксирибонуклеотидные звенья соединяют­ся между собой с помощью фосфодиэфирных мостиков, связывающих 5"-гидроксильную группу одного нуклеотида с 3"-гидроксильной груп­пой следующего. Таким образом, регулярная основная цепь образована фосфатными и рибозными остатками, а основания присо­единены к сахарам подобно тому, как присоединены боковые группы в белках. Порядок следования оснований вдоль цепи называется пер­вичной структурой НК. Последовательность оснований принято читать в направлении от 5"- к 3"- углеродному атому пентозы.

Структура ДНК. Модель структуры ДНК в виде двойной спирали была предложена Уотсоном и Криком в 1953 г (рис.7).

Согласно этой трехмерной модели, молекула ДНК состоит из двух противоположно направленных полинуклеотидных цепей, которые относительно одной и той же оси образуют правую спираль. Азотистые основания находятся внутри двойной спирали, и их плоскости перпендикулярны основной оси, а сахарофосфатные остатки экспонированы наружу. Между основаниями образуются специфические Н-связи: аденин - тимин (или урацил), гуанин - цитозин, получившие название уотсон-криковского спаривания. В результате более объемные пурины всегда взаимодействуют с пиримидинами, имеющими меньшие размеры, что обеспечивает оптимальную геометрию остова. Антипараллельные цепи двойной спирали не являются идентичными ни по последовательнос­ти оснований, ни по нуклеотидному составу, но они комплементарны друг другу именно благодаря наличию специфического водородного связывания между указанными выше основаниями.

Комплементарность очень важна для копирования (репликации) ДНК. Соотношения между числом различных оснований в ДНК, выявленные

Рис.7. В - форма ДНК

Чарграффом с соавт. в 50-х гг., имели большое значе­ние для установления структуры ДНК: было показано, что число адениновых остатков в основаниях цепи ДНК, независимо от организма, равно числу тиминовых, а число гуаниновых - числу цитозиновых. Эти равенства являются следствием избирательного спаривания оснований (рис.8).

Геометрия двойной спирали такова, что соседние пары основа­ний находятся друг от друга на расстоянии 0.34 нм и повернуты на 36° вокруг оси спирали. Следовательно, на один виток спирали прихо­дится 10 пар оснований, и шаг спирали равен 3.4 нм. Диаметр двой­ной спирали равен 20 нм и в ней образуются два желобка - большой и малый. Это связано с тем, что сахарофосфатный остов расположен дальше от оси спирали, чем азотистые основания.

Стабильность структуры ДНК обусловлена разными типами взаимо­действия, среди которых основными являются Н-связи между основа­ниями и межплоскостное взаимодействие (стэкинг). Благодаря послед­нему обеспечиваются не только выгодные ван-дер-ваальсовы контакты между атомами, но и возникает

Рис.8. Принцип комплементарности и антипараллельности цепей ДНК

дополнительная стабилизация вслед­ствие перекрывания р-орбиталей атомов параллельно расположенных оснований. Стабилизации способствует также благоприятный гидрофобный эффект, проявляющийся в защищенности малополярных ос­нований от непосредственного контакта с водной средой. Напротив, сахарофосфатный остов с его полярными и ионизированными группами экспонирован, что также стабилизирует структуру.

Для ДНК известны четыре полиморфные формы: А, В, С и Z. Обычной структурой является В-ДНК, в которой плоскости пар оснований перпендикулярны оси двойной спирали (рис.7.). В А-ДНК плоско­сти пар оснований повернуты примерно на 20° от нормали к оси пра­вой двойной спирали; на виток спирали здесь приходится 11 пар ос­нований. В С-ДНК на витке спирали 9 пар оснований. Z-ДНК - это левая спираль с 12 парами оснований на виток; плоскости оснований примерно перпендикулярны оси спирали. ДНК в клетке обычно находится в В-форме, но отдельные ее участки могут находиться в A, Z или даже в иной конформации.

Двойная спираль ДНК не застывшее образование, она находится в постоянном движении:

· деформируются связи в цепях;

· раскрываются и закрываются комплементарные пары оснований;

· ДНК взаимодействует с белками;

· если напряжение в молекуле велико, то она локально расплетается;

· правая спираль переходит в левую.

Различают 3 фракции ДНК:

1.Частоповторяемая (сателлитная) – до 106 копий генов (у мыши 10%). Она не участвует в синтезе белка; разделяет гены; обеспечивает кроссинговер; содержит транспозоны.

2.Слабоповторяемая – до 102 - 103 копий генов (у мыши 15%). Содержит гены синтеза т-РНК, гены синтеза белков рибосом и белков хроматина.

3.Уникальная (неповторяемая) – у мыши 75% (у человека 56%). Состоит из структурных генов.

Локализация ДНК: 95 % ДНК локализуется в ядре в хромосомах (линейные ДНК) и 5 % - в митохондриях, пластидах и клеточном центре в виде кольцевой ДНК.

Функции ДНК : хранение и передача информации; репарация; репликация.

Две цепи ДНК в области гена принципиально различаются по своей функциональной роли: одна из них является кодирую­щей, или смысловой, вторая - матричной.

Это значит, что в процессе «считывания» гена (транскрипции или синтеза пре-мРНК) в качестве матрицы выступает матричная цепь ДНК. Продукт же этого процесса-пре-мРНК - по последовательности нуклеотидов совпадает с кодирующей цепью ДНК (с заменой тиминовых основа­ний на урациловые).

Таким образом, получается, что с помощью матричной цепи ДНК при транскрипции воспроизводится в структуре РНК генетическая информация кодирующей цепи ДНК.

Главными матричными процессами, присущими всем живым орга­низмам, являются репликация ДНК, транскрипция и трансляция.

Репликация - процесс, при котором информация, закодирован­ная в последовательности оснований молекулы родительской ДНК, передается с максимальной точностью дочерней ДНК. При полукон­сервативной репликации дочерние клетки первого поколения полу­чают одну цепь ДНК от родителей, а вторая цепь является вновь синтезированной. Процесс осуществляется при участии ДНК-полимераз, которые относятся к классу трансфераз. Роль матрицы играют разделенные цепи двунитевой материнской ДНК, а субстратами яв­ляются дезоксирибонуклеозид-5"-трифосфаты.

Транскрипция - процесс переноса генетической информации от ДНК к РНК. Все виды РНК - мРНК, рРНК и тРНК - синтезируют­ся в соответствии с последовательностью оснований в ДНК, служа­щей матрицей. Транскрибируется только одна, так называемая «+»-цепь ДНК. Процесс протекает при участии РНК-полимераз. Субстратами являются рибонуклеозид-5"-трифосфаты.

Процессы репликации и транскрипции у прокариот и эукариот существенно различаются по скорости протекания и по отдельным механизмам.

Трансляция - процесс декодирования мРНК, в результате которого информация с языка последовательности оснований мРНК перево­дится на язык аминокислотной последовательности белка. Осуще­ствляется трансляция на рибосомах, субстратами являются аминоацил-тРНК.

Матричный синтез ДНК, катализируемый ДНК-полимеразами, выполняет две основные функции: репликацию ДНК - синтез но­вых дочерних цепей и репарацию двунитевых ДНК, имеющих разры­вы в одной из цепей, образовавшихся в результате вырезания нуклеазами поврежденных участков этой цепи. У прокариот и эукариот существует три разновидности ДНК-полимераз. У прокариот выделе­ны полимеразы I, II и III типов, обозначаемые как pol l, pol ll и pol III. Последняя катализирует синтез растущей цепи, pol играет важную роль в процессе созревания ДНК, функции pol ll изучены не полно­стью. В эукариотических клетках в репликации хромосом участвует ДНК-полимераза ά, в репарации - ДНК-полимераза β, а γ разновид­ность является ферментом, осуществляющим репликацию ДНК митохондрий. Эти Ферменты, независимо от типа клеток, в которых происходит реплика­ция, присоединяют нуклеотид к ОН-группе на З"-конце одной из цепей ДНК, которая растет в направлении 5"→3. Поэтому говорят, что дан­ные Ф обладают 5"→3"-полимеразной активностью. Помимо этого все они проявляют способность деградировать ДНК, отщепляя, нуклеотиды в направлении 3"→5, т. е. являются 3"→5"-экзонуклеазами.

В 1957 г. Мезельсон и Сталь, изучая E. coli установили, что на каждой свободной цепи фермент ДНК-полимераза строит новую, комплементарную цепь. Это полукон­сервативный способ репликации: одна цепь старая – другая новая!

Обычно репликация начинается в строго определенных участках, получивших название участков ori (от origin of replication), и от этих участков распространяется в обе стороны. Участкам ori предшеству­ют точки разветвления материнских цепей ДНК. Участок, примыка­ющий к точке разветвления, получил название репликативной вилки (рис.9). В ходе синтеза репликативная вилка перемещается вдоль молекулы, при этом расплетаются все новые участки родительской ДНК до тех пор, пока вилка не дойдет до точки терминации. Разделе­ние цепей достигается с помощью специальных Ф - геликаз (топоизомераз). Энергия, необходимая для этого, высвобождается за счет гидролиза АТФ. Геликазы перемещаются вдоль полинуклеотидных цепей в двух направлениях.

Для начала синтеза ДНК необходима затравка - праймер. Роль праймера выполняет короткая РНК (10-60 нуклеотидов). Она синте­зируется комплементарно определенному участку ДНК при участии праймазы. После образования праймера в работу включается ДНК-полимераза. В отличие от геликаз ДНК-полимеразы могут переме­щаться только от 3" к 5" концу матрицы. Поэтому элонгация расту­щей цепи по мере раскручивания двунитевой материнской ДНК мо­жет идти только вдоль одной цепи матрицы, той, относительно которой вилка репликации движется от 3" к 5" концу. Непрерывно синтезиру­емая цепь получила название лидирующей. Синтез на запаздывающей цепи также начинается с образования праймера и идет в направлении, противоположном ведущей цепи - от вилки репликации. Запаздыва­ющая цепь синтезируется фрагментарно (в виде фрагментов Оказа­ки), т. к. праймер образуется только тогда, когда вилка репликации освободит тот участок матрицы, который имеет сродство к праймазе. Лигирование (сшивание) фрагментов Оказаки с образованием еди­ной цепи носит название процесса созревания.

При созревании цепи РНК-затравка удаляется как с 5" конца ве­дущей цепи, так и с 5" концов фрагментов Оказаки, а эти фрагменты сшиваются друг с другом. Удаление затравки осуществляется при уча­стии 3"→5" экзонуклеазы. Этот же Ф вместо удаленной РНК присо­единяет дезоксинуклеотиды, используя свою 5"→3" полимеразную активность. При этом в случае присоединения «неправильного» нуклеотида осуществляется «корректорская правка» - удаление основа­ний, образующих некомплементарные пары. Этот процесс обеспечи­вает чрезвычайно высокую точность репликации, отвечающую одной ошибке на 109 пар оснований.

Рис.9. Репликация ДНК:

1 - репликативная вилка, 2 - ДНК-полимераза (pol I - созревание);

3 - ДНК-полимераза (pol III - «корректорская правка»); 4-геликаза;

5-гираза (топоизомераза); 6-белки, дестабилизирующие двойную спираль.


Коррекция осу­ществляется в тех случаях, когда к З"-концу расту­щей цепи присоединяется «неправильный» нуклеотид, неспособный образовать нужные водородные связи с матрицей. Когда pol III ошибочно при­соединяет неправильное основание, «включается» ее 3" -» 5"-экзонуклеазная активность, и это основа­ние немедленно удаляется, после чего восстанавли­вается полимеразная активность. Такой простой механизм действует благодаря тому, что pol III способна работать как полимераза лишь на совер­шенной двойной спирали ДНК с абсолютно пра­вильным спариванием оснований.

Еще один механизм удаления РНК-фрагментов основан на присутствии в клетках особой рибонуклеазы, получившей название РНКазы Н. Этот Ф специфичен к двунитевым структурам, построенным из одной рибонуклеотидной и одной дезоксирибонуклеотидной цепи, причем он гидролизует первую из них.

РНКаза Н также способна удалять РНК-праймер с последующей за­стройкой разрыва с помощью ДНК-полимеразы. На заключительных этапах сборки фрагментов в нужном порядке действует ДНК-лигаза, катализирующая образование фосфодиэфирной связи.

Раскручивание геликазами части двойной спирали ДНК в хромо­сомах эукариот приводит к сверхспирализации остальной части струк­туры, что неизбежно сказывается на скорости процесса репликации. Сверхспирализации препятствуют ДНК-топоизомеразы.

Таким образом, в репликации ДНК, помимо ДНК-полимеразы, принимает участие большой набор Ф: геликаза, праймаза, РНКаза Н, ДНК-лигаза и топоизомераза. Этим перечень Ф и белков, участвую­щих в матричном биосинтезе ДНК, далеко не исчерпывается. Однако многие из участников этого процесса до настоящего времени остают­ся мало изученными.

В процессе репликации происходит «корректорская правка» - удаление непра­вильных (образующих некомплементарные пары) оснований, включенных во вновь синтезированную ДНК. Этот процесс обеспечивает чрезвычайно вы­сокую точность репликации, отвечающую одной ошибке на 109 пар оснований.

Теломеры. В 1938г. классики генетики Б.Мак-Клинтон и Г. Мёллер доказали, что на концах хромосом есть специальные структуры, которые назвали теломерами (телос-конец, мерос-часть).

Ученые обнаружили, что при воздействии рентгеновским облучением устойчивость проявляют лишь теломеры. Напротив, лишенные концевых участков, хромосомы начинают сливаться, что ведет к тяжелым генетическим аномалиям. Т.о., теломеры обеспечивают индивидуальность хромосом. Теломеры плотно упакованы (гетерохроматин) и малодоступны для ферментов (теломеразы, метилазы, эндонуклеаз и др.)

Функции теломер.

1.Механические: а) соединение концов сестринских хроматид после S-фазы; б) фиксация хромосом к ядерной мембране, что обеспечивает конъюгацию гомологов.

2.Стабилизационные: а) предохранение от недорепликации генетически значимых отделов ДНК (теломеры не транскрибируются); б) стабилизация концов разорванных хромосом. У больных α - талассемией в генах α - глобина происходят разрывы хромосомы 16д и к поврежденному концу добавляются теломерные повторы (ТТАГГГ).

3.Влияние на экспрессию генов. Активность генов, расположенных рядом с теломерами, снижена. Это проявление сайленсинга – транскрипционное молчание.

4.«Счетная функция». Теломеры выступают в качестве часового устройства, которое отсчитывает количество делений клетки. Каждое деление укорачивает теломеры на 50-65 н.п. А всего их длина в клетках эмбриона человека составляет 10-15 тысяч н.п.

Теломерная ДНК попала в поле зрения биологов совсем недавно. Первые объекты исследования – одноклеточные простейшие – ресничная инфузория (тетрахимена), которая содержит несколько десятков тысяч очень мелких хромосом и, значит, множество теломер в одной клетке (у высших эукариот менее 100 теломер на клетку).

В теломерной ДНК инфузории многократно повторяются блоки из 6-ти нуклеотидных остатков. Одна цепь ДНК содержит блок 2 тимин – 4 гуанин (ТТГГГГ - Г-цепь), а комплементарная цепь - 2 аденин – 4 цитозин (ААЦЦЦЦ - Ц-цепь).

Каково же было удивление ученых, когда обнаружили, что теломерная ДНК человека отличается от таковой у инфузории всего лишь одной буквой и образует блоки 2 тимин – аденин – 3 гуанин (ТТАГГГ). Более того, оказалось, что из ТТАГГГ - блоков построены теломеры (Г – цепь) всех млекопитающих, рептилий, амфибий, птиц и рыб.

Впрочем, удивляться здесь нечему, так как в теломерной ДНК не закодировано никаких белков (она не содержит гены). У всех организмов теломеры выполняют универсальные функции, речь о которых шла выше. Очень важная характеристика теломерных ДНК – их длина. У человека она колеблется от 2 до 20 тысяч пар оснований, а у некоторых видов мышей может достигать сотен тысяч н.п. Известно, что около теломер есть специальные белки, обеспечивающие их работу и участвующие в построении теломер.

Доказано, что для нормального функционирования каждая линейная ДНК должна иметь две теломеры: по одной теломере на каждый конец.

У прокариот теломеров нет – их ДНК замкнута в кольцо.

Практически каждый слышал о существовании в живых клетках молекул ДНК и знает, что эта молекула ответственна за передачу наследственной информации. Огромная куча разных фильмов в той или иной степени строит свои сюжеты на свойствах маленькой, но гордой очень важной молекулы.

Однако мало кто хоть примерно сможет объяснить, что именно входит в состав молекулы ДНК и каким образом функционируют процессы считывания этой всей информации о «строении всего организма». Прочитать же без запинки «дезоксирибонуклеиновая кислота» способны и вовсе единицы.

Попробуем разобраться, из чего же состоит и как выглядит самая важная для каждого из нас молекула.

Строение структурного звена - нуклеотида

В состав молекулы ДНК входит множество структурных единиц, поскольку она является биополимером. Полимер - это макромолекула, которая состоит из множества маленьких, последовательно соединенных повторяющихся фрагментов. Подобно тому как цепь состоит из звеньев.

Структурным звеном макромолекулы ДНК является нуклеотид. В состав нуклеотидов молекулы ДНК входят остатки трех веществ - ортофосфорной кислоты, сахарида (дезоксирибозы) и одного из четырех возможных азотсодержащих оснований.

В состав молекулы ДНК входят азотистые основания: аденин (А), гуанин (Г), цитозин (Ц) и тимин (Т).

Состав цепи нуклеотидов отображают чередованием вошедших в нее оснований: -ААГЦГТТАГЦАЦГТ- и т.п. Последовательность может быть любая. Так формируется одинарная цепочка ДНК.

Спирализация молекулы. Явление комплементарности

Величина молекулы ДНК человека чудовищно огромна (в масштабах других молекул, конечно)! В геноме одной-единственной клетки (46 хромосом) содержится примерно 3,1 млрд пар нуклеотидов. Длина цепочки ДНК, составленной таким количеством звеньев, равняется примерно двум метрам. Трудно представить, каким образом настолько громоздкую молекулу можно разместить в пределах крохотной клетки.

Но природа позаботилась о более компактной упаковке и защите своего генома - две цепочки соединяются между собой азотистыми основаниями и образуют хорошо известную двойную спираль. Таким образом, удается сократить длину молекулы почти в шесть раз.

Порядок взаимодействия азотистых оснований строго определен явлением комплементарности. Аденин может соединяться исключительно с тимином, а цитозин взаимодействует только с гуанином. Эти комплементарные пары подходят друг другу как ключ и замок, как кусочки пазла.

Теперь давайте посчитаем, сколько же памяти в компьютере (ну или на флешке) должна занимать вся информация об этой маленькой (в масштабе нашего с вами мира) молекуле. Количество пар нуклеотидов - 3,1х10 9 . Всего значений 4, что означает - для одной пары достаточно 2-х бит информации (2 2 значений). Умножаем все это друг на друга и получаем 6200000000 бит, или 775000000 байт, или 775000 килобайт, или 775 мегабайт. Что примерно соответствует емкости CD диска или объему какой-нибудь 40-минутной серии фильма в среднем качестве.

Образование хромосом. Определение генома человека

Помимо спирализации, молекула еще неоднократно подвергается уплотнению. Двойная спираль начинает закручиваться подобно клубку ниток – этот процесс называется сверхспирализацией и происходит с помощью специального белка гистона, на который как на катушку наматывается цепочка.

Этот процесс сокращает длину молекулы еще в 25-30 раз. Подвергаясь еще нескольким уровням упаковки, все больше и больше уплотняясь, одна молекула ДНК совместно со вспомогательными белками формирует хромосому.

Вся информация, которая касается формы, вида и особенностей функционирования нашего организма определяется набором генов. Ген - это строго определенный участок молекулы ДНК. Он состоит из неизменной последовательности нуклеотидов. Более того, ген жестко определен не только составом, но и своим положением относительно других участков цепи.

Рибонуклеиновая кислота и ее роль в синтезе белка

Помимо ДНК существуют другие виды нуклеиновых кислот – матричная, транспортная и рибосомная РНК (рибонуклеиновая кислота). Цепи РНК намного меньше и короче, благодаря этому они способны проникать сквозь мембрану ядра.

Молекула РНК также является биополимером. Ее структурные фрагменты подобны тем, что входят в состав ДНК за небольшим исключением сахарида (рибозы вместо дезоксирибозы). Азотистых оснований четыре вида: знакомые нам А, Г, Ц и урацил (У) вместо тимина. На картинке выше все это наглядно показано.

Макромолекула ДНК способна передать информацию РНК в раскрученном виде. Раскручивание спирали происходит с помощью специального фермента, который разделяет двойную спираль на отдельные цепочки – как расходятся половинки замка-молнии.

В это же время, параллельно цепи ДНК создается комплементарная цепь РНК. Скопировав информацию и попав из ядра в среду клетки, цепочка РНК инициирует процессы синтеза закодированного геном белка. Синтез протеинов протекает в особых органеллах клетки - рибосомах.

Рибосома по мере прочтения цепочки определяет, в какой последовательности необходимо соединять аминокислоты, одна за другой - по мере считывания в РНК информации. Затем, синтезированная цепочка аминокислот принимает определенную 3D форму.

Эта объемная структурная молекула и является протеином, способным выполнять закодированные функции ферментов, гормонов, рецепторов и строительного материала.

Выводы

Для любого живого существа именно белок (протеин), является конечным продуктом каждого гена. Именно протеины определяют все то разнообразие форм, свойств и качеств, которые зашифрованы в наших клетках.

Уважаемые читатели блога , а вы знаете где находится ДНК , оставляйте комментарии или отзывы что вы хотели узнать. Кому то это очень пригодиться!

Свойства ДНК определяются ее строением:

1. Универсальность - принципы построения ДНК для всех организмов одинаковы.

2. Специфичность - определяется соотношением азотистых оснований: А + Т,

которое специфично для каждого вида. Так у человека оно составляет 1,35, у бактерий – 0,39

Специфичность зависит от:

· количества нуклеотидов

· вида нуклеотидов

· расположение нуклеотидов в цепи ДНК

2. Репликация или самоудвоение ДНК: ДНК↔ДНК. Генетическая программа клеточных организмов записана в нуклеотидной последовательности ДНК. Для сохранения уникальных свойств организма необходимо точное воспроизведение этой последовательности в каждом последующем поколении. Во время деления клетки содержание ДНК должно удвоиться, чтобы каждая дочерняя клетка могла получить полный спектр ДНК, т.е. в любой делящейся соматической клетке человека должно быть скопировано 6,4*10 9 нуклеотидных пар. Процесс удвоения ДНК получил название репликации. Репликация относится к реакциям матричного синтеза. Во время репликации каждая из двух цепей ДНК служит матрицей для образования комплементарной (дочерней) цепи. Протекает она в S-период интерфазы клеточного цикла. Высокая надежность процесса репликации гарантирует практически безошибочную передачу генетической информации в ряду поколений. Пусковым сигналом для начала синтеза ДНК в S-периоде является так называемый S – фактор (специфические белки). Зная скорость репликации и длину хромосомы эукариот можно рассчитать время репликации, которое теоретически составляет несколько суток, а практически репликация осуществляется за 6 – 12 часов. Из этого следует, что репликация у эукариот одновременно начинается в нескольких местах на одной молекуле ДНК.

Единицей репликации является репликон. Репликон – это участок ДНК, где происходит репликация. Количество репликонов на одну интерфазную хромосому у эукариот может достигать 100 и более. В клетке млекопитающих может быть 20 – 30 тыс. репликонов, у человека – примерно 50 тыс. При фиксированной скорости роста цепи (у эукариот – 100 нуклеотидов в секунду) множественная инициация обеспечивает большую скорость процесса и снижение времени, необходимого для дупликации протяженных участков хромосом, т.е. у эукариот осуществляется полирепликонная репликация. (рис. 21)

Репликон содержит все необходимые гены и регуляторные последовательности, которые обеспечивают репликацию. Каждый репликон в процессе клеточного деления активируется один раз. Репликация контролируется на стадии инициации. Если процесс удвоения начался он будет продолжаться до тех пор, пока весь репликон не будет удвоен.

У прокариот вся ДНК является одним репликоном.

Рис.21. Репликация хромосомной ДНК эукариот. Репликация идет в двух направлениях из разных точек начала репликации (Ori) с образованием пузырьков. «Пузырь» или «глаз» это область реплицированной ДНК внутри нереплицированной. (А. С. Коничев, Г. А. Севастьянова, 2005, с. 213)

Ферменты, участвующие в процессе репликации, объединены в мультиферментативный комплекс . В репликации ДНК у прокариот участвует 15 ферментов, а у эукариот – более 30, т.е. репликация – это архисложный и суперточный многоступенчатый ферментативный процесс. В состав ферментативных комплексов входят следующие ферменты:

1) ДНК – полимеразы (I, III), катализируют комплементарное копирование, т.е. отвечают за рост дочерней цепи. (рис. 22) Прокариоты реплицируются со скоростью 1000 нуклеоти­дов в секунду, а эукариоты - 100 нуклеотидов в секунду. По­ниженная скорость синтеза у эукариот связана с затрудненной диссоциа­цией гистоновых белков, которые необходимо удалить для продвижения ДНК-полимеразы в репликативной вилке вдоль цепи ДНК.

2) ДНК - праймаза. ДНК – полимеразы могут удлинять полинуклеотидную цепь присоединяясь к уже имеющимся нуклеотидам. Поэтому, чтобы ДНК – полимераза смогла начать синтез ДНК, ей необходима затравка или праймер (от. англ. primer – затравка). ДНК – праймаза синтезирует такую затравку, которая затем замещается сегментами ДНК. (рис. 22).

3) ДНК – лигаза, соединяет фрагменты Оказаки друг с другом за счет образования фосфодиэфирной связи.

4) ДНК – хеликаза, расплетает спираль ДНК, разрывает водородные связи между ними. В результате образуются две одиночные разнонаправленные ветви ДНК (рис.22).

5) SSB – белки, связываются с одноцепочечной ДНК и стабилизируют её, т.е. они создают условия для комплементарного спаривания.

Репликация ДНК начинается не в любой случайной точке молекулы, а в специфических местах, называемых областью (точками) начала репликации (Ori). Они имеют определенные последовательности нуклеотидов, что облегчает разделение цепей (рис.21). В результате инициации репликации в точке Ori образуются одна или две репликативные вилки – места разделения материнских цепей ДНК. Процесс копирования продолжается до тех пор, пока ДНК полностью не удвоится или пока репликативные вилки двух соседних точек начала репликации не сольются. Точки начала репликации у эукариот разбросаны по хромосоме на расстоянии равном 20 000 пар нуклеотидов (рис.21).

Рис.22. Репликация ДНК (объяснение в тексте). (Б. Альбертс и др., 1994, т. 2, с. 82)

Фермент – хеликаза – разрывает водородные связи, т.е. расплетает двойную цепь, образуя две разнонаправленные ветви ДНК (рис.22). Одноцепочечные участки связываются специальными SSВ-белками , которые выстраиваются снаружи каждой материнской цепи и оттягивают их друг от друга. Это делает азотистые основания доступными для связывания с комплементарными нуклеотидами. В месте схождения этих ветвей по направлению репликации ДНК располагается фермент ДНК-полимераза, который катализирует процесс и кон­тролирует точность комплементарного синтеза. Особенностью работы данного фермента является его однонаправленность, т.е. построение дочерней цепи ДНК идет по направ­лению от 5" конца к 3" . На одной материнской цепи синтез дочерней ДНК идет непрерывно (лидирующая цепь). Она растет от 5" к 3" концу в направлении движения репликативной вилки и поэтому нуждается только в одном акте инициации. На другой материнской цепи синтез дочерней цепи идет в виде коротких фрагментов с обычной 5" - 3" полярностью и при помощи ферментов – лигаз происходит их сшивание в одну неперывную отстающую цепь. Поэтому для синтеза отстающей цепи требуется несколько актов (точек) инициации.

Такой способ синтеза назван прерывистой репликацией. Фрагментные участки, син­тезированные на отстающей цепи, в честь первооткрывателя названы фрагментами Оказаки . Они обнаружены у всех реп­лицирующихся ДНК, как у прокариот, так и у эукариот. Их длина соответствует 1000 – 2000 нуклеотидам у прокариот и 100 – 200 у эукариот. Таким образом, в результате репликации образуются 2 идентичные молекулы ДНК, в которых одна цепь материнская, другая вновь синтезированная. Такой способ репликации называют полуконсервативным. Предположение о таком способе репликации было сделано Дж. Уотсоном и Ф. Криком, а доказано в 1958г. М . Мезелсоном и Ф. Сталем . После репликации хроматин представляет собой систему из 2 декомпактизированных молекул ДНК, объединенных цен­тромерой.

В процессе репликации могут возникать ошибки, которые у прокариот и эукариот бывают с одной и той же час­тотой - одна на 10 8 -10 10 нуклеотидов , т.е. в среднем 3 ошибки на геном . Это доказательство высокой точности и скоординированности процессов репликации.

Ошибки репликации исправляются ДНК-полимеразой III («механизм корректорской правки») или системой репараций.

2. Репарация - это свойство ДНК восстанавливать свою цело­стность, т.е. исправлять повреждения. Передача наследственной информации в неискаженном виде важнейшее условие выживания как отдельного организма, так и вида в целом. Большинство изменений вредны для клетки, они либо приводят к мутациям, либо блокируют репликацию ДНК, либо вызывают гибель клетки. ДНК постоянно подвергается действию спонтанных (ошибки репликации, нарушение структуры нуклеотида и т.д.) и индуцированных (УФ – облучение, ионизирующая радиация, химические и биологические мутагены) факторов среды. В ходе эволюции выработалась система позволяющая исправлять нарушения в ДНК – система репарации ДНК . В результате её активности на 1000 повреждений ДНК только одно приводит к мутациям. Повреждение - любое изменение ДНК, которое вызывает отклонение от обычной двуцепочечной структуры:

1) появление одноцепочечных разрывов;

2) удаление одного из оснований, в результате чего его го­молог остается неспаренным;

3) замещение одного основания в комплементарной паре другим, неправильно спа­ренным с основанием-партнером;

4) появление ковалентных связей между основаниями од­ной цепи ДНК или между основаниями на противоположных цепях.

Репарация может проходить до удвоения ДНК (дорепликативная репарация) и после удвоения ДНК (пострепликативная). В зависимости от характера мутагенов и степени повреждения ДНК в клетке идет световая (фотореактивация), темновая, SOS-репарация и др.

Считают, что фотореактивация идет в клетке, если повреж­дения ДНК вызваны естественными условиями (физиологические особенности организма, обычные факторы среды, в том числе - ультрафиолетовые лучи). Восстановление целостности ДНК при этом, происходит с участием видимого света: репаративный фермент активируется квантами видимо­го света, соединяется с поврежденной ДНК, разъединяет пиримидиновые димеры нарушенного участка и восстанавливает целостность нити ДНК.

Темновая репарация (эксцизионная) наблюдается после действия ионизи­рующей радиации, химических веществ и т.д. Она включает удаление поврежденного участка, восстановление нормальной структуры молекулы ДНК (рис.23). Для этого типа репарации необходима вторая комплементарная цепь ДНК. Темновая репарация многосту­пенчата, в ней участвует комплекс ферментов, а именно:

1)фермент, узнающий поврежденный участок цепи ДНК

2)ДНК – эндонуклеаза, делает разрыв в поврежденной цепи ДНК

3) экзонуклеаза удаляет измененную часть нити ДНК

4) ДНК – полимераза I синтезирует новый участок ДНК взамен удаленного

5)ДНК- лигаза сшивает конец старой нити ДНК с вновь синтезированной, т.е. замыкает два конца ДНК (рис.23). В темновой репарации у человека принимают участие 25 белков-ферментов.

При больших повреждениях ДНК, которые угрожают жизни клеток, включается SOS-репарация . SOS-репарация была открыта в 1974 году. Такой тип репарации отмечают после действия больших доз ионизирующей радиации. Ха­рактерная черта SOS-репарации - неточность восстановления первичной структуры ДНК, в связи с чем она получила назва­ние репарации, склонной к ошибкам . Главная цель SOS-репарации сохранить жизнеспособность клетки.

Нарушение в системе репарации могут приводить к преждевременному старению, развитию онкологических заболеваний, болезням аутоиммунной системы, гибели клетки или организма.

Рис. 23. Репарация поврежденной ДНК путем замены модифицированных нуклеотидных остатков (темновая репарация или эксцизионная). (М. Сингер, П. Берг, 1998, т. 1, с.100)



Что еще почитать