Философские аспекты современной космологии кратко и понятно. Реферат: Современная научная космология. Современное развитие космологии как науки

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

3. Влияние развития техники и технологии на жизнь людей

Литература

1. Понятие техники, ее сущность, функции

Наше время невозможно представить себе вне техники, как и вне науки. Научно-технический прогресс является, пожалуй, самой характерной доминантой Западной цивилизации, если не ее сущностью. Тем не менее, если наука получила достаточно всестороннее освещение во многих трудах, как ученых, так и философов, социологов, культурологов и т.д., то техника все еще остается «заповедной зоной» при всей своей значимости для судеб человечества она не осмыслена на столько, чтобы можно было уверенно смотреть в будущее и понимать настоящее. Вот почему принято считать, что философия техники - область сравнительно молодая - пока еще находится в стадии своего становления Щекалов И. А. Философия техники. М., 2004. .

Философия техники как самостоятельная философская дисциплина сформировалась позднее философии науки. Сам термин был введен немецким философом Э. Каппом, опубликовавшим в 1877 году книгу под названием «Основные направления философии техники. К истории возникновения культуры с новой точки зрения».

Как полагает большинство исследователей, философия техники призвана решать две взаимосвязанные группы проблем. В первую из них входит осмысление техники, уяснение ее природы и сущности, ее роли в истории цивилизации и в современном обществе. Вторая группа проблем связана с анализом тенденций развития современных обществ и возможностей приостановки неблагоприятных тенденций путем технического совершенствования соответствующих сфер общественной и частной жизни. Принято считать, что в настоящий момент человечество переживает множество глобальных кризисов: экологический, эсхатологический, антропологический (деградация человека и духовности), кризис культуры и другие, причем все эти кризисы взаимосвязаны, а техника и, более широко, техническое отношение к окружающему миру является одним из наиболее влиятельных факторов этого глобального ухудшения Степин B.C., Горохов В.Г., Розов М. А. Философия науки и техники.-М., 1995. С. 124. .

К основным характеристикам техники, определяющим ее сущность, относят следующие:

Техника есть искусственное образование, она специально изготавливается, создается человеком. В этом смысле техника - продукт культуры, а не природы. Техника воплощает в себе культурные идеи и опыт. Создание и использование техники подразумевает существование технологии и специальной организации деятельности, как индивидуальной, так и коллективной.

Техника является средством, орудием, которая служит для решения определенных задач, удовлетворяя тем самым какие-либо потребности человека. В силу этого к технике можно отнести любые такие средства: от простейших орудий труда до сложнейших технических систем.

Мир техники - это отдельная, самостоятельная реальность. Техника может противостоять не только природе, как искусственное - естественному, но и человеку (как творение - творцу). Чем более независимой, автономной от человека становится техника, тем более зависимым в своем существовании от техники становится человек.

Техника представляет собой специфический способ использования сил и энергий природы, природа при этом рассматривается как неиссякаемый источник энергии и материалов, а техника, создаваемая на основании современных научных теорий, становится средством подчинения природы человеку. Основные виды современной технической деятельности - это инженерное конструирование и изобретение.

Техника в современном мире тесно связана с технологией, а та, в свою очередь, со всем комплексом естественнонаучного и технического знания. Уровень развития техники напрямую зависит от уровня научного и технологического развития общества, а опосредованным образом - от культурного уровня общества в целом.

Технику как средство нельзя отделять от использующей это средство деятельности, поскольку как средства оказывают воздействие на характер деятельности, так и сама деятельность определяет свойства и характеристики используемых средств. Таким образом, в структуре техники можно различать технико-использующую деятельность, технико-производящую деятельность, собственно технические средства (орудия, машины, механизмы), а также техническую среду. Средства, которые применяет техника, могут выступать в виде орудия для изготовления орудия, в виде инструментов, производственного оборудования различного типа, но также и в виде методов и способов действия. В этом смысле применяемое здесь понятие техники выходит за рамки инженерной техники, оно охватывает также организационную технику и системотехнику, но также и технику нанесения мазков кистью, которую применяет художник, или технику дыхания, которую практикует певец, т. е. все специальные методы, позволяющие лучше достигать чего бы то ни было Ханс Закссе Антропология техники. М.,1989. .

Современная техника -- тоже средство для достижения целей. Недаром инструментальным представлением о технике движимы все усилия поставить человека в должное отношение к технике. Все нацелено на то, чтобы надлежащим образом управлять техникой как средством. Хотят, что называется, «утвердить власть духа над техникой». Хотят овладеть техникой. Это желание овладеть становится все более настойчивым, по мере того как техника все больше грозит вырваться из-под власти человека 3 .

Ну а если допустить, что техника вовсе не просто средство, как тогда будет обстоять дело с желанием овладеть ею?

Средство есть нечто такое, действием чего обеспечивается и тем самым достигается результат. То, что имеет своим последствием действие, называют причиной. Причина, однако, -- не только нечто такое, посредством чего достигается нечто другое. Цель, в стремлении к которой выбирают вид средства, тоже играет роль причины. Где преследуются цели, применяются средства, где господствует инструментальное, там правит причинность, каузальность Хайдеггер М. Вопрос о технике. //Время и бытие. М., 1993. С.221-238 .

С философской точки зрения техника по своей природе -- это универсальное стремление, направленное на совокупность тех сфер, в которых развертывается человеческая жизнь и вообще реальность. Философское знание, если оно хочет быть верным своей задаче, должно в своей амбиции оказаться способным на информацию даже о самых обескураживающих сферах реальности. Его энергия не может удовлетвориться никаким признанием границ, никаким исключением туманных областей из своего универсального стремления к освещению.

Освещение этой огромной проблемы философией необходимо современному человеку также для самоутверждения в собственных человеческих обстоятельствах. Для того чтобы обеспечить господство своей рефлексии над жизнью. Весь наш мир отмечен специализацией -- человек вручает себя своим произведениям, существование дробится на изолированные ячейки, отдельный человек поглощается феноменом коллективности, которая торжествует даже в таких высших областях человеческой жизни, как научное существование. Вещи и социальное «чудовище» угрожают самому великому и самому характерному в человеке -- его внутреннему миру и личной ответственности, господствующей в его жизни.

В мире раздробленности и слепой деятельности, наблюдающихся в определенных областях, особенно в области технического действия, философия как поиск смысла и единства -- могучая потребность.

Много говорится о том, что техника угрожает гуманности. Это, конечно, верно, хотя нельзя сводить все исключительно к технике без учета общей ситуации современного человека. Признав эту угрозу, мы не хотим обесценить нашу эпоху перед лицом прошедших золотых веков. Просто каждый момент истории по-своему велик и ограничен. Нам выпало на долю осуществить формальную полноту возможностей современного мира. Не ослепляясь бесспорными успехами наших дней, понять основные грозящие нам опасности, чтобы преодолеть их.

Эти опасности угрожают самой подлинности нашего человеческого существования. Ведь быть человеком -- значит существовать проблематично, на уровнях, отличных от антропологической полноты или минимальности. В отличие от животного или ангела мы «неуверенные существа. Нам нужно утвердить свое господство над биологией, взять под контроль наши инстинктивные порывы, осуществить таящиеся в человеке потенциальные возможности. И хотя человеческая история в общих чертах представляет собой последовательный триумф разума над животным началом, сегодня нам грозит новая опасность, воплощенная не в животном, а в автомате, -- ситуация, созданная человеком» Парис К. Техника и философия // Антология. Москва: «Высшая школа», 1995. С.250-264 .

2. Основные исторические этапы, закономерности развития техники

В древнем мире техника, техническое знание и техническое действие были тесно связаны с магическим действием и мифологическим миропониманием. Первые машины приносились в дар богам и посвящались культу, прежде чем стали употребляться для полезных целей. Колесо было великим изобретением и оно было, прежде всего, посвящено богам.

Наука древнего мира была еще не только неспециализированной и недисциплинарной, но и неотделимой от практики и техники. Важнейшим шагом на пути развития западной цивилизации была античная революция в науке, которая выделила теоретическую форму познания и освоения мира в самостоятельную сферу человеческой деятельности.

Античная наука была комплексной по самому своему стремлению максимально полного охвата осмысляемого теоретически и обсуждаемого философски предмета научного исследования. Специализация еще только намечалась и, во всяком случае, не принимала организованных форм дисциплинарности. Понятие техники также было существенно отлично от современного. Древние греки проводили четкое различение теоретического знания и практического ремесла Брамко Р. Философы Древней Греции. М., 2002. С. 37. .

В средние века архитекторы и ремесленники полагались в основном на традиционное знание, которое держалось в секрете и которое со временем изменялось лишь незначительно. Вопрос соотношения между теорией и практикой решался в моральном аспекте - например, какой стиль в архитектуре является более предпочтительным с божественной точки зрения.

В эпоху Возрождения ситуация меняется. Именно инженеры, художники и практические математики Возрождения сыграли решающую роль в принятии нового типа практически ориентированной теории. Изменился и сам социальный статус ремесленников, которые в своей деятельности достигли высших уровней ренессансной культуры. В эпоху Возрождения наметившаяся уже в раннем Средневековье тенденция к всеохватывающему рассмотрению и изучению предмета выразилась, в частности, в формировании идеала энциклопедически развитой личности ученого и инженера, равным образом хорошо знающего и умеющего - в самых различных областях науки и техники Горфункель А. X. Философия эпохи Возрождения. М., 1980. С. 78. .

В науке Нового времени можно наблюдать иную тенденцию - стремление к специализации и вычленению отдельных аспектов и сторон предмета как подлежащих систематическому исследованию экспериментальными и математическими средствами. Одновременно выдвигается идеал новой науки, способной решать теоретическими средствами инженерные задачи, и новой, основанной на науке, техники.

В Новое время научное мышление перестает выполнять служебную функцию по отношению к религии - научное мышление начинает обслуживать инженерию. Именно в конце Средних веков, начале Возрождения формируется новое понятие природы как бесконечного источника сил и энергий (сначала божественных, потом естественных), а также замысел использования этих сил и энергий на основе научного познания устройства и законов природы.

В контексте усилий, направленных на реализацию этого замысла, складывались как новый тип науки, получившей название «естественной», так и инженерия. Настоящими пионерами в этой области были Галилео Галилей (1564-1642) и Христиан Гюйгенс (1629-1695).

Галилей показал, что для использования науки в целях описания естественных процессов природы годятся не любые научные объяснения и знания. Для этой цели пригодны лишь такие знания, которые, с одной стороны, описывают реальное поведение объектов природы, а с другой - это описание предполагает проецирование на объекты природы научной теории и выделение особых идеальных объектов, которые моделируются в этой теории. Другими словами, естественнонаучная теория должна описывать (моделировать) поведение идеальных объектов, но таких, которым соответствуют определенные реальные объекты Горфункель А. X. Философия эпохи Возрождения. М., 1980. С. 81. .

На творчество Галилея целиком опирается Гюйгенс, но интересует его другая задача - как научные знания использовать при решении технических задач. Фактически он сформировал образец принципиально новой деятельности - инженерной, опирающейся, с одной стороны, на специально построенные научные знания, а с другой - на отношения параметров реального объекта, рассчитанных с помощью этих знаний. Если Галилей показал, как приводить реальный объект в соответствие с идеальным, то Гюйгенс продемонстрировал, каким образом полученное в теории и эксперименте соответствие идеального и реального объектов использовать в технических целях.

Впервые это новое понимание афористически заявляет Френсис Бэкон (1561-1626). В «Новом Органоне» он пишет: «В действии человек не может ничего другого, как только соединять и разделять тела природы. Остальное природа совершает внутри себя... Дело и цель человеческого могущества, чтобы порождать и сообщать данному телу новую природу или новые природы. Дело и цель человеческого знания в том, чтобы открывать форму данной природы или истинное отличие, или производящую природу, или источники происхождения... Что в Действии наиболее полезно, то в Знании наиболее истинно» Бэкон, Ф. Новый органон / Ф. Бэкон. Соч. в 2-х т. Т. 2. -- М., 1978. С. 147. .

Таким образом, новое понимание существования неотделимо от творческой, инженерной деятельности человека, точнее, оно расположено на границе двух сфер - естественнонаучного познания и инженерной деятельности. Именно этот идеал привел в конечном итоге к дисциплинарной организации науки и техники. В социальном плане это было связано со становлением профессий ученого и инженера, повышением их статуса в обществе. Сначала наука многое взяла у мастеров-инженеров эпохи Возрождения, затем в XIX-XX веках профессиональная организация инженерной деятельности стала строиться по образцам действия научного сообщества. Специализация и профессионализация науки и техники с одновременной технизацией науки и сциентификацией техники имели результатом появление множества научных и технических дисциплин, сложившихся в XIX-XX веках в более или менее стройное здание дисциплинарно организованных науки и техники. Этот процесс был также тесно связан со становлением и развитием специально-научного и основанного на науке инженерного образования.

Итак, можно видеть, что в ходе исторического развития техническое действие и техническое знание постепенно отделяются от мифа и магического действия, но первоначально опираются еще не на научное, а лишь на обыденное сознание и практику Степин B.C., Горохов В.Г., Розов М. А. Философия науки и техники.-М., 1995. С. 128. .

3. Техника в системе общественных отношений: проблемы и тенденции развития отношений человека и техники

Одной из важнейших проблем, которой занимается философия техники, является проблема и концепция человека, создающего и использующего технику. Особенность этой проблемы в настоящее время связана с выросшей до беспредельности технологической мощью, имеющейся в распоряжении человека. При этом число людей, которых затрагивают технические мероприятия или их побочные эффекты, увеличилось до громадной величины. Затронутые этими воздействиями люди уже более не находятся в непосредственной связи с теми, кто производит данные воздействия. Природные системы сами становятся предметом человеческой деятельности. Человек своим вмешательством может их постоянно нарушать и даже разрушать. Несомненно, это абсолютно новая ситуация: никогда прежде человек не обладал такой мощью, чтобы быть в состоянии уничтожить жизнь в частичной экологической системе и даже в глобальном масштабе или решающим образом довести ее до вырождения Спиркин А.Г. Философия: учебник / А.Г. Спиркин. - 2-изд. М.: Гардарики, 2008. С. 552. .

Поэтому общество не должно без предварительной экспертизы производить все, что может производить, не должно делать все то, что оно может делать, и, несомненно, не сразу же после открытия новых технических возможностей.

Наука и техника характеризуют сегодняшнюю жизнь. Лозунги «технический век», «научно-техническая цивилизация» подчеркивают этот тезис. И в самом деле: в то время, как наука в течение уже нескольких столетий определяет западную культуру - по крайней мере в ее духовном самопонимании - влияние техники и промышленности (и через них также и прикладных наук) особенно бросается в глаза в последнем столетии. Карл Ясперс считал даже, что техника является сегодня, вероятно, главным предметом для понимания нашего положения и значение ее влияния на все жизненные проблемы просто невозможно переоценить. Таким образом, интеллектуальное объяснение, философия культуры и социальная философия технического и научного мира крайне необходимы, чтобы вообще можно было понять ситуацию человека в современном обществе. Это понимание в свою очередь могло бы быть необходимым предварительным условием преодоления всех проблем и конфликтов между техникой, природой и обществом. В действительности оказывается, что для существующих высокоразвитых индустриальных обществ характерно переплетение влияний этих трех сфер: технические средства и методы применяются все больше в тех областях, которые традиционно избегают ее вмешательства. Особенно примечательно в этом отношении широкое применение методов переработки информации и электронной обработки данных. Информация и манипулирование ею стали в последнее время в огромных масштабах доступны систематическому техническому вмешательству Ленк Х. Размышления о современной технике. М.,1996. С.43-80 .

Тенденция к всеохватывающей системотехнике и организационной технологии также сказывается в скачкообразно возрастающем применении связанных с информацией систем, все шире распространяющихся системотехнических методов, включая технику программирования, управление процессами и их оптимизацию, в подходах к технике управления и регулирования, технике структурного и сетевого планирования, а также в автоматизации и в насаждении компьютеров почти во все доступные области организации и производства, вплоть до робототехники. Все эти тенденции являются отражением позиции действительно всеохватывающей системной рационализации. В высокоразвитых индустриальных обществах лишь немного десятилетий существующие технические средства коммуникации передачи информации сделали возможным обширное применение и влияние информационных систем. Чтобы обозначить эти сдвиги во влиянии техники на сегодняшнее общество через, быть может, образное, но содержательно концентрированное выражение, я 15 лет назад писал о том, что «технический век» превращается в «информационно- и системно-технологический век». Мы живем не в постиндустриальную, а в супериндустриальную системно-технологическую эпоху. К уже давно известным технологическим вызовам, например, через концентрацию технических устройств и проблемы ее последствий в областях сосредоточения индустрии присоединяются сегодня типично «системотехнические» или даже «системократические» вызовы, скажем, через обширные системы данных и документации, которые могут, например, при известных условиях комбинировать и запасать больше информации об отдельных лицах, чем они сами знают о себе Ленк Х. Размышления о современной технике. М.,1996. С.43-80 .

Выдающийся русский философ Н.А. Бердяев интересовался проблемами воздействия техники на социальное бытие современного человека на протяжении всей своей творческой жизни. Он утверждал, что техника положила конец Ренессансному периоду европейской истории и тем самым вызвала кризис гуманизма. С ее приходом произошла величайшая революция, какую только знала история; эта революция не имеет внешних признаков, как например, революция во Франции 1789-1794 г.г., но несмотря на это она более радикальна по семи последствиям. Это одна из самых больших революций в человеческой судьбе.

С машины начинается переворот во всех сферах жизни. В его основе лежит переход от органического типа человека к механическому, машинному типу и складу всей жизни общества. Органический тип, считал Н.А. Бердяев, строился на нераздельном единстве человека и природы, материи и духа и предполагал целостность как базовую характеристику. Машина радикально изменила отношение между человеком и природой, ибо она встала между ними и тем самим «разорвала» их связь, разобщила их. Теперь не природа формирует человека, а машина делает это; она, будучи его детищем, покоряет его и подчиняет себе.

Так в человеческую жизнь врывается «третья сила», некий чуждый элемент, не - природный и не - человеческий; он, однако, получает страшную власть над человеком и над природой. Завоевывается и покоряется внешняя природа, и от этого меняется сама человеческая природа. Происходит как бы вырывание человека из недр природы; машина как будто клещами вырывает дух из природной материи, и он освобождается, дематериализируется. Тяжесть и скованность материального мира выделяются из него и передаются машине, мир от этого как бы облегчается, становится другим.

Неверно, однако, противопоставлять дух машине, как это нередко делается при первых попытках осмыслить роль техники. В своей глубинной основе машина есть явление духа, момент в пути его исторического развития. Машина не умерщвляет дух (как утверждается в некоторых религиозных публикациях); она умерщвляет материю и от противного способствует освобождению духа. С вхождением машины в человеческую жизнь умерщвляется плоть, старый синтез плотской жизни Бердяев. Дух и машина // Н. Бердяев. Судьба России. - М., 1990. С. 240. .

Эти рассуждения Н.А. Бердяева важны в том отношении, что они исключают возможность истолкования его взглядов в догматическом ключе; он был не против машины, не против технического прогресса. Еще в 1918 г. он прямо заявлял, что Россия должна вступить на путь материального технического прогресса. Но сам этот прогресс виделся ему как противоречивый, несущий в себе не только блага, но и серьезные утраты.

Отдельные высказывания о роли техники можно найти практически во всех работах Бердяева, включая его знаменитую книгу «Смысл истории», вышедшую в 1923 году. Концентрированное изложение своих мыслей по этим проблемам он дал в большом очерке «Человек и машина», опубликованном в журнале «Путь» за 1933 год. Специально технике посвящена одна из глав последнего, изданного посмертно, крупного произведения Бердяева - «Царство духа и царство Кесаря». Кроме того, социальные и философские аспекты техники рассмотрены в статье «Человек и техническая цивилизация», вышедшей в последний год жизни мыслителя.

В своих произведениях Бердяев неоднократно подчеркивал, что вопрос о технике стал в начале XX в. вопросом о судьбе человека и судьбе культуры.

Русский мыслитель считал, что власть техники неразрывно связана с капитализмом Бердяев Н.А. Человек и машина // Вопросы философии. - 1989. - №2. . Эта власть родилась в капиталистическом мире, а сама техника стала наиболее эффективным средством развития капиталистической системы хозяйства. При этом коммунизм перенял от капиталистической цивилизации ее беспредельный гипертехницизм, и создал религию машины, которой он поклоняется как тотему. Тем самым обнаруживается глубокое внутреннее родство между атеистической верой коммунизма и безрелигиозностью современного мира.

Бердяев полагал, что господство техники открывает новую ступень действительности: «новая реальность», воплощением которой является машина, по своей сути отличается от природной как неорганической, так и органической реальности. Специфический характер реальности, созданной машинной технологией, виден в том воздействии, которое последняя оказала, с одной стороны, на жизнь человека, а, с другой, - на окружающую среду. Это воздействие является результатом нового типа организации, которую Бердяев называл «техносистемой» и рассматривал как некий рыхлый агломерат экономических, промышленных и технологических ассоциаций, распространяющих свое влияние на весь мир. Различные элементы техносистемы не имеют общего управления, действуя отчасти в конкуренции, а отчасти - в кооперации друг с другом. Ими руководят не столько конкретные личности, сколько с трудом опознаваемые анонимные и безличные управляющие силы. Деятельность техносистемы ведет к интеграции и унификации в масштабах земного шара различных укладов жизни, человеческих ожиданий и потребностей. Именно в этом смысле можно, по Бердяеву, рассматривать техносистему как «новую ступень действительности» Там же. .

В своей статье «Человек и машина» его взгляды на проблему кризиса человека и человечности, вызванного бурным развитием техники и натиском сциентистско-технократической идеологии, представлены с наибольшей последовательностью. Он рассматривает вопросы, которые остаются актуальными даже в настоящее время: служит ли техника лишь символом отчуждения и власти, или она -- новая среда, реализующая возможности человека? Если техника меняет характер и организацию труда, означает ли это, что человек всегда покорно следовал навязанным ему формам? Новая природная действительность, перед которой ставит человека современная техника, совсем не есть продукт эволюции, а есть продукт изобретательности и творческой активности самого человека, не процесса органического, а процесса организационного. С этим связан смысл всей технической эпохи. Господство техники и машины есть, прежде всего, переход от органической жизни к организованной жизни, от растительности к конструктивности. С точки зрения органической жизни техника означает развоплощение, разрыв в органических телах истории, разрыв плоти и духа. Техника раскрывает новую ступень действительности, и эта действительность есть создание человека, результат прорыва духа в природу и внедрение разума в стихийные процессы. Техника разрушает старые тела и создает новые тела, совсем не похожие на тела органические, создает тела организованные. «Человек заменяется машиной. Техника заменяет органически-иррациональное организованно-рациональным. Но она порождает новые иррациональные последствия в социальной жизни. Так рационализация промышленности порождает безработицу, величайшее бедствие нашего времени. Труд человека заменяется машиной, это есть положительное завоевание, которое должно было бы уничтожить рабство и нищету человека. Но машина совсем не повинуется тому, что требует от нее человек, она диктует свои законы. Человек сказал машине: ты мне нужна для облегчения моей жизни, для увеличения моей силы, машина же ответила человеку: а ты мне не нужен, я без тебя все буду делать, ты же можешь пропадать... Машина хочет, чтобы человек принял ее образ и подобие. Но человек есть образ и подобие Бога и не может стать образом и подобием машины, не перестав существовать» Бердяев Н.А. Человек и машина // Вопросы философии. - 1989. - № 2. .

Бердяев, настаивая на том, что машина и техника имеют космогоническое значение, устанавливает «четыре периода в отношении человека к космосу» Там же. : 1) погружение человека в космическую жизнь, зависимость от объектного мира, невыделенность еще человеческой личности, человек не овладевает еще природой, его отношение магическое и мифологическое (примитивное скотоводство и земледелие, рабство); 2) освобождение от власти космических сил, от духов и демонов природы, борьба через аскезу, а не технику (элементарные формы хозяйства, крепостное право); 3) механизация природы, научное и техническое овладение природой, развитие индустрии в форме капитализма, освобождение труда и порабощение его, порабощение его эксплуатацией орудий производства и необходимость продавать труд за заработную плату; 4) разложение космического порядка в открытии бесконечно большого и бесконечно малого, образование новой организованности, в отличие от органичности, техникой и машинизмом, страшное возрастание силы человека над природой и рабство человека у собственных открытий.

В свете современных экологических проблем научно-технический прогресс зачастую предстает как явление не столько полезное, сколько вредное и даже опасное для человека.

В науке и технике зачастую видят не созидающее начало и преобразующие возможности, а деструктивную силу, разрушающую природу и нарушающую естественное экологическое равновесие. Отсюда призывы и попытки если не остановить развитие науки и техники, то хотя бы направить их в определенное, заранее заданное русло. Заметим, что такие взгляды, высказывавшиеся еще в эпоху Просвещения, значительно усилились теперь, под влиянием глобальных проблем и неблагоприятной экологической обстановки. Однако дальше призывов дело никогда не шло, не идет теперь и нет достаточных оснований полагать, что в будущем что-либо серьезно изменится в этом отношении. Зато есть основания предполагать обратное - подобный ход мыслей не отражает существующие реалии и потому все попытки действовать в этом направлении становятся занятием не только бесперспективным, но и бесполезным Чумаков А.Н. Антропологический аспект технического прогресса //Материалы междунар. науч. конф. (18-19 июня 1998). - М., 1998. .

Причин тому несколько, но основная, пожалуй, состоит в том, что и наука, и техника - результат творческой деятельности человека, в которой содержится значительная доля эвристики, иррациональности и стихийности, не поддающиеся контролю и управлению, тем более, когда речь идет о масштабах общечеловеческих. Этот, казалось бы, минус является таковым лишь настолько, насколько мы испытываем страх перед неизвестным и тем, что неподвластно нам. На самом же деле и наука, и техника могут и должны рассматриваться как явления положительные и прогрессивные. Смысл и предназначение их - увеличить человеческие возможности познавать и преобразовывать объективную действительность, и вряд ли стоит в отрыве от человека мистифицировать их или рассматривать как самостоятельный источник какой-то опасности. Несомненно, они принципиально изменяют не только человеческую жизнь, но и самого человека, отдаляя людей от животного состояния, цивилизуя их и придавая им уверенности в себе. И это абсолютно естественно, более того - необходимо, если мы, памятуя слова В.И.Вернадского, хотим, чтобы человек взял на себя ответственность за дальнейшее развитие не только самого себя, но и биосферы в целом Вернадский В.И. Биосфера и ноосфера. -- М.: Наука, 1989. . При этом он должен хорошо осознавать свою активную, преобразующую роль в отношениях с техникой и природой, а также свою полную ответственность за техногенные изменения.

Литература

1. Бердяев Н.А. Человек и машина // Вопросы философии. - 1989. - №2.

2. Бердяев Н.А. Дух и машина // Н. Бердяев. Судьба России. - М., 1990.

3. Брамко Р. Философы Древней Греции. М., 2002.

4. Бэкон Ф. Новый органон / Ф. Бэкон. Соч. в 2-х т. Т. 2. -- М., 1978. С. 147.

5. Вернадский В.И. Биосфера и ноосфера. -- М.: Наука, 1989.

6. Горфункель А.X. Философия эпохи Возрождения. М., 1980.

7. Ленк Х. Размышления о современной технике. М.,1996. С.43-80

8. Митчем К. Что такое философия техники? - М., 1995.

9. Новая технократическая волна на Западе,- М., 1995.

10. Парис К. Техника и философия // Антология. Москва: «Высшая школа», 1995. С.250-264

11. Симоненко О.Д. Сотворение техносферы: проблемное осмысление истории техники,-М., 1994.

12. Степин B.C., Горохов В.Г., Розов М. А. Философия науки и техники.-М., 1995.

13. Философия науки и техники. - М., 1995.

14. Хайдеггер М. Вопрос о технике. //Время и бытие. М., 1993. С.221-238

15. Ханс Закссе Антропология техники. М.,1989.

16. Чумаков А.Н. Антропологический аспект технического прогресса //Материалы междунар. науч. конф. (18-19 июня 1998). - М., 1998. -

17. Щекалов И. А. Философия техники. М., 2004.

Подобные документы

    Цели и функции техники. Инженерное и гуманитарное направления философии техники. Концепция техники Э. Каппа как проекции органов человека. Манганизм и натуризм как направления в культурном развитии техники. Ф. Бон - основоположник философии техники.

    презентация , добавлен 10.10.2013

    Определение и основные этапы истории развития техники. Ознакомление с основами философии техники в классических трудах современных философов. Изучение проблемы повышения общей ответственности инженеров и техников за результаты своего творчества.

    реферат , добавлен 10.01.2015

    Философствующие инженеры и первые философы техники. Распространение технических знаний в России в XIX - начале XX вв. как предпосылка развития философии техники. Сущность и природа техники. Технико-производящая деятельность, ее влияние на природу.

    реферат , добавлен 27.11.2009

    Определение понятия техники как объекта социально-философского исследования. Необходимость описания статуса техники в современном обществе. Социальные последствия научно-технического прогресса и перспективы развития постиндустриальной цивилизации.

    реферат , добавлен 07.04.2012

    История формирования техники в архаической культуре. Особенности развития науки и инженерии в античные, Средние века и в Новое время. Исследование связи техники и социального развития общества. Концепция информатизации интеллектуальной деятельности.

    реферат , добавлен 02.10.2011

    Философствующие инженеры и первые философы техники. Распространение технических знаний в России в XIX – начале XX вв. как предпосылка развития данной философии в России. Рассмотрение сущностных характеристик техники, природы производящей деятельности.

    реферат , добавлен 08.06.2015

    Развитие техники в древности. Становление экспериментальной науки и динамика развития техники. Причины, побуждающие развитие техники. Сопоставление духовной и материальной культур. Теория-основа технического развития. Гипотеза-предшественник теории.

    реферат , добавлен 11.09.2008

    Компетенции инженера, создание модели "компетентного специалиста". Техника в исторической ретроспективе. Основные философские подходы к осмыслению техники, уяснению ее природы и сущности. Поиск в философии техники путей разрешения кризиса техники.

    курс лекций , добавлен 28.05.2013

    Понятие и сущность техники, закономерности и проблемы развития, роль в жизни. Связь технического знания с мифологическим миропониманием в древнем мире. Этапы формирования ремесленной и инженерной деятельности. Возникновение современного технического мира.

    реферат , добавлен 15.05.2014

    Сущность неомарксизма как нового философского течения, его отличительные признаки от "советского марксизма". Основополагающие идеи неомарксизма, его движущие силы и этапы развития в Европе 30-х годов. Структура и основные вопросы философии техники.

Космология - это комплексное рассмотрение нашей Вселенной с научной и философской точки зрения. Ее зарождение началось ещё во времена древних людей. Они очень увлекались мифами, поклонению богам, первым изучением звёзд и т. д. Благодаря древним людям мы узнали о существовании первых планет. В основе изучения космологии лежит сопоставление физических свойств Вселенной.

Понятие космологии с точки зрения науки

Космология - это наука, которая объединяет астрофизику и астрономию. Данные для нее получают путем наблюдения за астрономическими изменениями во Вселенной. Для этого применяются законы относительности, которые были приняты ещё самим Альбертом Эйнштейном. Уже в 20-х годах XX века эта наука была отнесена к классу точных, до этого она считалась частью философских учений. Современная космология на сегодняшний день становится очень популярной. Она объединяет в себе новые открытия в сфере физики, астрономии, астрологии и философии. Последним достижением является так называемая теория Большого взрыва, согласно которой наша Вселенная меняется в своих размерах из-за высокой плотности и температуры.

Исторические аспекты становления данной науки

Ещё в начале XX века, перед тем как заявить о своем открытии, учёный должен был не только теоретически, но и практически доказать уникальность результатов. Но вернемся в древние века, когда люди только начинали делать свои первые шаги в астрономии. Ещё в Древнем Египте, Китае, Индии, Греции ученые занимались наблюдением за небесными явлениями. Благодаря этому был создан лунный календарь, по которому очень длительное время ориентировались жители Земли.

Античная космология была основана на различных мифах и легендах. Аристотель был основателем теории гомоцентрических сфер: наша планета лежит на поверхности полой сферы, центр которой является центром Земли. Именно поэтому тогда была очень популярна модель божественного происхождения Земли. В дальнейшем происходило изменение учений с каждым последующим веком. Древние физики утверждали, что вокруг Земли происходит движение планет, а сама она находится непосредственно в центре самой Вселенной. Однако все это было лишь теорией, практических подтверждений на тот момент не было.

Современное развитие космологии как науки

Лишь в XV веке Николаю Копернику удалось обобщить все существовавшие на тот момент знания. Согласно его теории, в центре нашей Вселенной находится Солнце, вокруг которого постоянно движутся планеты, в том числе и Земля с Луной. В основу своей теории Коперник положил утверждения таких учёных, как Аристарх Самосский, Леонардо да Винчи, Гераклит и Кузо.

Ещё один большой шаг в развитии этой науки был сделан Кеплером. Он создал свои известные три теории, которые в дальнейшем использовал Исаак Ньютон для своих законов динамики. Именно благодаря этим законам люди увидели абсолютно другой подход к движению планет во Вселенной. Таким образом, можно сделать вывод, что космология и физика были очень тесно связаны между собой. Космология кратко дает общие понятия процессов, происходящих в нашей Вселенной.

Основные концептуальные взгляды космологии

Ещё древние люди искали ответ на вопрос: "Какое место наш окружающий мир занимает в самой Вселенной?" В Библии было написано, что наша Вселенная в самом начале была абсолютно невидимой и непримечательной. Эйнштейн утверждал, что Вселенная не движется и находится в стационарном положении. Однако позднее ученый Фридман доказал, что за счёт определенного движения происходит ее постепенное сужение и расширение. С помощью результатов исследований, полученных астрономом Хабблом, были с точностью измерены расстояния до галактик. Именно благодаря его открытиям и возникла так называемая теория Большого взрыва.

Основы теории Большого взрыва

Согласно ее положениям, начинать отсчет возраста Вселенной нужно с момента ядерного взрыва. Таким образом, ученые получили результат в 13 млрд лет. На сегодняшний день положения астрофизики для космологии имеют только теоретический аспект. В первые секунды после Большого взрыва произошло развитие частиц под названием "кванты", затем спустя время стали появляться кварки, которые имели разные виды взаимодействий. Лишь спустя 0,01 с после взрыва начали свое развитие различные звёзды, галактики и собственно сама Солнечная система.

Что изучает космология?

Это наука, которая объединяет знания по физике, математике, астрономии и философии. Космология изучает Вселенную как одно целое. В её основе лежит изучение появления всех небесных тел (планеты, Солнце, Луна, метеориты и т. д.), а также звездных скоплений. Теоретические утверждения космологии почерпнуты из астрономии, в некоторых случаях даже из геологии, а практические - из физики.

Понятие Вселенной в космологии

Исходя из утверждений ученых, Вселенная состоит из определенных структур: галактик, звёзд и планет. Каждая из них прошла определенную эволюцию:

  • прототипом галактик в древние времена были протогалактики;
  • для звезд это протозвёзды;
  • для планет - протопланетные облачные образования.

Самой изученной частью на данный момент является метагалактика. Это объединение большого числа галактик, которые находятся в поле зрения астронавтов. Их распределение неравномерно, что экспериментально доказано в астрономии. На сегодняшний день учёные занимаются изучением большого пространства, в котором абсолютно отсутствуют галактики. По возрасту метагалактика приближена к Вселенной.

Сама по себе галактика с точки зрения астрономии - это совокупность звёзд, туманных образований, которые со временем объединяются в достаточно плотную структуру. Они бывают различных форм и размеров. Самой известной из них считается Млечный путь, который может видеть каждый из обитателей Земли. Также в состав галактик входит газ и космическая пыль. Звёзды совершенно разные по возрасту: одни из них могут быть возрастом, как сама Вселенная, другие могут только родиться. Их зарождение происходит при воздействии гравитации, магнитной и других сил.

Таким образом, можно сделать вывод, что космология Вселенной на сегодняшний день обладает очень многими знаниями, однако в тоже время таит в себе много загадок. разгадать которые под стать только самым гениальным учёным.

Проблемы теории Большого взрыва

Космология - это относительно молодая наука. Она стала существовать отдельно лишь с середины XX века. Её основные доводы экспериментально доказаны благодаря учёным из области астрономии, которые вели наблюдения за нашей Вселенной. Космология - это постоянно развивающаяся наука, она не стоит на месте. Те теоретические данные, которые были выдвинуты несколько десятилетий назад, уже получили экспериментальное подтверждение или опровержение.

Например, во времена учений Эйнштейна и Фридмана плотность Вселенной могла иметь любое значение. Сегодня научно доказано, что эта величина составляет критическое значение р кр. Таких примеров можно привести огромное количество.

Существует ряд основных проблем космологии, которые остаются актуальными на сегодняшний день:

  • плоскость Вселенной;
  • горизонт Вселенной (выглядит идентично с разных направлений);
  • откуда возникли гравитационные уплотнения, в результате которых образовались галактики;
  • из каких именно веществ на самом деле состоит наша Вселенная;
  • согласно теории квантовой гравитации космологическая постоянная должна быть выше в 120 раз;
  • как между собой согласуются время жизни Вселенной и звезд.

Различие между астрономией и космологией

  1. Космология - это наука о Вселенной как едином целом, астрономия же изучает лишь звёздные тела.
  2. Астрономия возникла у древних людей намного раньше, они ориентировались только по звёздам, поклонялись древним богам и т. д.
  3. Космология объединяет знания из астрофизики, физики, философии, геологии, космогонии и астрономии.
  4. В космологии ученые не привязывают свои теории к конкретным планетам, а трактуют их как бы обобщенно.
  5. Астрономия не полагается практически ни на один закон физики, в то время как в основе космологии лежат многие физические утверждения.
  6. Космология, в отличие от астрологии, не относится к строгим наукам. Ряд её предположений не несет никакого практического подтверждения.
  7. Астрономия включает в себя наблюдения за космическими явлениями, в то время как космология находит объяснения для каждого из них.

Однако даже на сегодняшний день многие ученые считают, что космология является частью астрономии и не относят её к отдельным направлениям.

В современной науке сделано много открытий, которые позволяют расширить знания о нашей Вселенной. Некоторые из теорий подтверждены учеными мира экспериментально. Однако остается ещё много задач, которые требует тщательного изучения и материальной базы. Даже сегодня не существует единого мнения, что собой представляет Вселенная, из какого вещества она состоит. Это и является одним из заданий учёных в области не только космологии, но и сопутствующих ей наук. Знания об окружающем нас мире растут в геометрической прогрессии, но наряду с ними появляется все больше дополнительных вопросов. Для космологии это можно считать нормальным путём развития и становления как отдельной науки.

Слабый антропный принцип: то, что мы предполагаем наблюдать, должно удовлетворять условиям, необходимым для присутствия человека в качестве наблюдателя. Сильный антропный принцип: Вселенная должна быть такой, чтобы в ней на некоторой стадии эволюции мог существовать наблюдатель.

С глубокой древности и до начала нынешнего столетия космос считали неизменным. Звездный мир олицетворял собой абсолютный покой, вечность и беспредельную протяженность. Открытие в 1929 году взрывообразного разбегания галактик, то есть быстрого расширения видимой части Вселенной, показало, что Вселенная нестационарна. Экстраполируя процесс расширения в прошлое, сделали вывод, что 15-20 миллиардов лет назад Вселенная была заключена в бесконечно малый объем пространства при бесконечно большой плотности и температуре вещества-излучения (это исходное состояние называют «сингулярностью»), а вся нынешняя Вселенная конечна – обладает ограниченным объемом и временем существования.

Отсчет времени жизни такой эволюционирующей Вселенной ведут от момента, при котором, как полагают, внезапно нарушилось состояние сингулярности и произошел «Большой Взрыв». По мнению большинства исследователей, современная теория «Большого Взрыва» (ТБВ) в целом довольно успешно описывает эволюцию Вселенной, начиная примерно с 10-44 секунды после начала расширения. Единственной брешью в прекрасном сооружении ТБВ они считают проблему Начала – физического описания сингулярности. Однако и тут преобладает оптимизм: ожидают, что с созданием «Теории Всего Сущего», объединяющей все фундаментальные физические силы в единое универсальное взаимодействие, эта проблема будет автоматически решена. Тем самым построение модели мироздания в наиболее общих и существенных чертах благополучно завершится. Этот энтузиазм весьма напоминает настроения, царившие в физике на рубеже XIX-XX столетий, когда казалось, что строительство здания точных наук в основном приближается к концу и оставшиеся непроясненными несколько «темных пятен» (в частности, проблема излучения «черного тела», из которой родилась квантовая механика) общей картины не портят. По-видимому надежды, разделяемые нынешними сторонниками ТБВ, столь же иллюзорны. 15-20 миллиарда лет – так определяет сейчас наука возраст Вселенной. Когда человек не знал этой цифры, он не мог задаваться вопросом, которым он задается сегодня: что было до этой даты? До этой даты, утверждает современная космогония, вся масса Вселенной была сжата, была втиснута в некую точку, исходную каплю космоса.

Когда Вселенная пребывала в исходном точечном состоянии, рядом, вне ее не существовало материи, не было пространства, не могло быть времени. Поэтому невозможно сказать, сколько продолжалось это – мгновение или бессчетные миллиарды лет. Невозможно сказать не только потому, что нам это неизвестно, а потому что не было ни лет, ни мгновений – времени не было. Его не существовало вне точки, в которую была сжата вся масса Вселенной, потому что вне ее не было ни материи, ни пространства. Времени не было, однако, и в самой точке, где оно должно было практически остановиться.

Не обязательно, чтобы исходная точка – то «космическое яйцо», из которого родилась Вселенная, была заполнена сверхплотной материей, мыслима такая космологическая схема, в которой Вселенная не только логически, но и физически возникает из ничто, причем при строгом соблюдении всех законов сохранения. Ничто (вакуум) выступает в качестве основной субстанции, первоосновы бытия.

В свете новых космогонических представлений само понимание вакуума было пересмотрено наукой. Вакуум есть особое состояние вечно движущейся, развивающейся материи. На исходных стадиях Вселенной интенсивное гравитационное поле может порождать частицы из вакуума.

И снова необъяснимую аналогию этим представлениям современного знания находим мы у древних. О переходе вещества в иное состояние, даже об «исчезновении материи» в момент гибели Вселенной упоминал философ и богослов Ориген (II-III в.н.э.). Когда Вселенная возникает опять, "материя, – писал он, – вновь получает бытие, образуя тела …".

Нам неизвестно, почему, в силу каких причин это исходное, точечное состояние было нарушено и произошло то, что обозначается сегодня словами «Большой Взрыв». Согласно сценарию исследователей, вся наблюдаемая сейчас Вселенная размером в 10 миллиардов световых лет возникла в результате расширения, которое продолжалось всего 10-30 с. Разлетаясь, расширяясь во все стороны, материя отодвигала безбытие, творя пространство и начав отсчет времени. Так видит становление Вселенной современная космогония.

Если концепция о «Большом Взрыве» верна, то он должен был бы оставить в космосе своего рода «след», «эхо». Такой «след» был обнаружен. Пространство Вселенной оказалось пронизано радиоволнами миллиметрового диапазона, разбегающимися равномерно по всем направлениям. Это «реликтовое излучение Вселенной» и есть приходящий из прошлого след сверхплотного, сверхраскаленного ее состояния, когда не было еще ни звезд, ни туманностей, а материя представляла собой дозвездную, догалактическую плазму.

Теоретически концепция «расширяющейся Вселенной» была выдвинута известным ученым А.А.Фридманом в 1922-1924 годах. Десятилетия спустя она получила практическое подтверждение в работах американского астронома Э.Хаббла, изучавшего движение галактик. Хаббл обнаружил, что галактики стремительно разбегаются, следуя некоему импульсу, заданному в момент «Большого Взрыва». Если разбегание это не прекратится, будет продолжаться неограниченно, то расстояние между космическими объектами будет возрастать, стремясь к бесконечности. По расчетам Фридмана, именно так должна была бы проходить дальнейшая эволюция Вселенной. Однако при одном условии – если средняя плотность массы Вселенной окажется меньше некоторой критической величины (эта величина составляет примерно три атома на кубический метр). Какое-то время назад данные, полученные американскими астрономами со спутника, исследовавшего рентгеновское излучение далеких галактик, позволили рассчитать среднюю плотность массы Вселенной. Она оказалась очень близка к той критической массе, при которой расширение Вселенной не может быть бесконечно. Обратиться к изучению Вселенной посредством исследования рентгеновских излучений пришлось потому, что значительная часть ее вещества не воспринимается оптически. По крайней мере 50% массы нашей Галактики мы «не видим», писал журнал английских ученых «New Scientist». Об этом не воспринимаемом нами веществе свидетельствуют, в частности, гравитационные силы, которые определяют движение нашей и других галактик, движение звездных систем. Вещество это может существовать в виде «черных дыр», масса которых составляет сотни миллионов масс нашего Солнца, в виде нейтрино или других каких-то неизвестных нам форм. Не воспринимаемые, как и «черные дыры», короны галактик могут быть, считают некоторые, в 5-10 раз больше массы самих галактик.

Предположение, что масса Вселенной значительно больше, чем принято считать, нашло новое весьма веское подтверждение в работах физиков. Ими были получены первые данные о том, что один из трех видов нейтрино обладает массой покоя. Если остальные нейтрино имеют те же характеристики, то масса нейтрино во Вселенной в 100 раз больше, чем масса обычного вещества, находящегося в звездах и галактиках.

Это открытие позволяет с большей уверенностью говорить, что расширение Вселенной будет продолжаться лишь до некоторого момента, после которого процесс обратится вспять – галактики начнут сближаться, стягиваясь снова в некую точку. Вслед за материей будет сжиматься в точку пространство. Произойдет то, что астрономы обозначают сегодня словами «Схлопывание Вселенной».

Поворот течения времени, в масштабах Вселенной, аналогичен подобному же событию, происходящему на сжимающейся, «коллапсирующей» звезде. Условные часы, находящиеся на поверхности такой звезды, сначала должны будут замедлить свой ход, затем, когда сжатие достигнет критического гравитационного «горизонта событий», они остановятся. Когда же звезда «провалится» из нашего пространства-времени, условные стрелки на условных часах двинутся в противоположную сторону – время пойдет обратно. Но всего этого сам гипотетический наблюдатель, находящийся на такой звезде, не заметит. Замедление, остановку и изменение направления времени мог бы воспринять только некто наблюдающий происходящее как бы со стороны, находящийся вне «схлопывающейся» системы. Если наша Вселенная единственная и нет ничего вне ее – ни материи, ни времени, ни пространства, – то не может быть и некоего взгляда со стороны, который мог бы заметить, когда время изменит ход и потечет вспять.

Некоторые ученые считают, что событие это в нашей Вселенной уже произошло, галактики падают друг на друга, и Вселенная вступила в эпоху своей гибели. Существуют математические расчеты и соображения, подтверждающие эту мысль. Сторонники этой точки зрения вспоминают в этой связи одно из «темных мест» Платона. В диалоге «Политик» Платон говорит о времени, которое некогда внезапно «потекло вспять», о странных космических явлениях, сопровождавших это событие. Многие века это сообщение не поддавалось расшифровке, пока в современной космогонии не появились данные, позволяющие попытаться понять его с позиций сегодняшнего знания.

Что произойдет после того, как Вселенная вернется в некую исходную точку? После этого начнется новый цикл, произойдет очередной «Большой Взрыв», праматерия ринется во все стороны, раздвигая и творя пространство, снова возникнут галактики, звездные скопления, жизнь. Такова, в частности, космологическая модель американского астронома Дж.Уиллера, модель попеременно расширяющейся и «схлопывающейся» Вселенной. Известный математик и логик Курт Гёдель математически обосновал то положение, что при определенных условиях наша Вселенная действительно должна возвращаться к своей исходной точке с тем, чтобы потом опять совершить тот же цикл, завершая его новым возвращением к исходному своему состоянию. Этим расчетам соответствует и модель английского астронома П.Дэвиса, модель «пульсирующей Вселенной». Но что важно – Вселенная Дэвиса включает в себя замкнутые линии времени, иначе говоря, время в ней движется по кругу. Число возникновений и гибели, которые переживает Вселенная, бесконечно. И снова – свидетельства прошлого. За тысячи лет до того, как современное логически выдержанное, рациональное знание пришло к этой картине мира, подобное представление устойчиво присутствовало в сознании древнего человека. Вселенная, писал шумерский философ и жрец Бероуз (III в.н.э.), периодически уничтожается и потом воссоздается снова. Из древнего Шумера эта концепция пришла в эллинский мир, Рим, Византию.

А как представляет себе гибель Вселенной современная космогония? Известный американский физик С.Вайнберг описывает это так. После начала сжатия в течение тысяч и миллионов лет не произойдет ничего, что могло бы вызвать тревогу наших отдаленных потомков. Однако, когда Вселенная сожмется до 1/100 теперешнего размера, ночное небо будет источать на Землю столько же тепла, сколько сегодня дневное. Затем через 70 миллионов лет Вселенная сократится еще в десять раз и тогда «наши наследники и преемники (если они будут) увидят небо невыносимо ярким». Еще через 700 лет космическая температура достигнет десяти миллионов градусов, звезды и планеты начнут превращаться в «космический суп» из излучения, электронов и ядер.

После сжатия в точку, после того, что мы именуем гибелью Вселенной (но что, может, вовсе и не есть ее гибель), начинается новый цикл. Вспомним об упомянутом уже реликтовом излучении, эхе «Большого Взрыва», породившего нашу Вселенную. Излучение это, оказывается, приходит не только из прошлого, но и «из будущего»! Это отблеск «мирового пожара», исходящего от следующего цикла, в котором рождается новая Вселенная. Температура реликтового излучения, наблюдаемого сегодня, на 3? выше абсолютного нуля. Это и есть температура «электромагнитной зари», знаменующей рождение новой Вселенной.

Реликтовое излучение – только ли оно пронизывает наш мир, приходя как бы с двух сторон – из прошлого и грядущего? Только ли это? Материя, составляющая мир, Вселенную и нас, возможно, несет в себе некую информацию. Исследователи с долей условности, но говорят уже о «внутреннем опыте», своего рода «памяти» молекул, атомов, элементарных частиц. Атомы углерода, побывавшего в живых существах «биогенные».

Коль скоро в момент схождения Вселенной в точку материя не исчезает, то не исчезает, неуничтожима и информация, которую она несет. Наш мир заполнен ею, как он заполнен, материей, составляющей его.

Вселенная, что придет на смену нашей, будет ли она её повторением?

Вполне возможно, отвечают некоторые космологи. Вовсе не обязательно, возражают другие. Нет никаких физических обоснований, считает, например, доктор Р.Дик из Принстонского университета, чтобы всякий раз в момент образования Вселенной физические закономерности были те же, что и в момент начала нашего цикла. Если же эти закономерности будут отличаться даже самым незначительным образом, то звезды не смогут впоследствии создать тяжелые элементы, включая углерод, из которого построена жизнь. Цикл за циклом Вселенная может возникать и уничтожаться, не зародив ни искорки жизни.

Современная космология - это раздел астрономии, в котором объединены данные физики и математики, а также универсальные философские принципы, поэтому она представляет собой синтез научных и философских знаний. Такой синтез в космологии необходим, поскольку размышления о происхождении и устройстве Вселенной эмпирически трудно проверяемы и чаще всего существуют в виде теоретических гипотез или математических моделей. Космологические исследования обычно развиваются от теории к практике, от модели к эксперименту, и здесь исходные философские и общенаучные установки приобретают большое значение. По этой причине космологические модели существенно различаются между собой - в их основе зачастую лежат противоположные исходные философские принципы. В свою очередь, любые космологические выводы также влияют на общефилософские представления об устройстве Вселенной, т.е. изменяют фундаментальные представления человека о мире и самом себе.

Важнейший постулат современной космологии заключается в том, что законы природы, установленные на основе изучения весьма ограниченной части Вселенной, могут быть экстраполированы на гораздо более широкие области, а в конечном счете и на всю Вселенную. Космологические теории различаются в зависимости от того, какие физические принципы и законы положены в их основу. Построенные на их базе модели должны допускать проверку для наблюдаемой области Вселенной, а выводы теории - подтверждаться наблюдениями или во всяком случае не противоречить им.

Уже древние мудрецы задавались вопросом о происхождении и устройстве Вселенной. Их взгляды и идеи были неотъемлемым компонентом философских систем древности. Эти первые космологические идеи, сохранившиеся до наших дней в виде мифов, основывались на астрономических наблюдениях. Жрецам Вавилона, Египта, Индии и Китая удалось точно вычислить продолжительность года, повторяемость солнечных и лунных затмений. Наблюдая за небесными телами, они смогли выявить две группы небесных тел: подвижные и неподвижные. Множество звезд долгое время считались неподвижными объектами. К числу подвижных тел относились Луна, Солнце и пять известных в то время планет, названных именами богов (впервые это было сделано в Вавилоне, сегодня же мы используем в качестве названий планет имена римских богов) - Меркурий, Венера, Марс, Юпитер и Сатурн. В их честь неделя была разделена на семь дней, каждый из которых в существующей и сегодня астрологической традиции связан с одним из подвижных тел. Из наблюдения видимого движения Солнца по небесной сфере были открыты двенадцать так называемых зодиакальных созвездий.

После того как появилась философия, пришедшая вместе с наукой на смену мифологии, ответ на «вечные» вопросы стали искать в основном в рамках философских концепций. В античности появилось несколько интересных космологических моделей Вселенной, принадлежащих Пифагору, Демокриту, Платону. Тогда же возникли и первые гелиоцентрические модели Вселенной. Так, Гераклид Понтийский признавал суточное вращение Земли и ее движение вокруг покоящегося Солнца. Аристарх Самосский выдвигал идею о том, что Земля вращается по окружности, центром которой служит Солнце. Но гелиоцентрические идеи были отвергнуты большинством античных мыслителей, и общепризнанным итогом античной космологии стала геоцентрическая концепция, сформулированная Аристотелем и усовершенствованная Птолемеем. Данная модель просуществовала в течение всего Средневековья. Она была очень сложной, так как для компенсации видимого движения планет, совершающих петлеобразные движения, пришлось ввести систему деферентов и эпициклов.


С приходом Нового времени философия уступила свое первенство в создании космологических моделей науке, которая добилась особенно больших успехов в XX в., перейдя от различных догадок к достаточно обоснованным фактам, гипотезам и теориям. Первым результатом стало появление в XVI в. гелиоцентрической модели Вселенной, автором которой стал Николай Коперник. В этой модели Вселенная все еще представляла собой замкнутую сферу, в центре которой находилось Солнце, а вокруг него вращались планеты, в том числе и Земля.

Успехи космологии и космогонии в XVIII-XIX вв. завершились созданием классической полицентрической картины мира, ставшей начальным этапом развития научной космологии. Данная модель достаточно проста и понятна. Вселенная считается бесконечной в пространстве и во времени, иными словами, вечной. Основным законом, управляющим движением и развитием небесных тел, является закон всемирного тяготения. Пространство никак не связано с находящимися в нем телами, играя пассивную роль вместилища для этих тел. Время также не зависит от материи, являясь универсальной длительностью всех природных явлений и тел. Исчезни вдруг все тела, пространство и время сохранились бы неизменными. Количество звезд, планет и звездных систем во Вселенной бесконечно велико. Каждое небесное тело проходит длительный жизненный путь. На смену погибшим, точнее, погасшим, звездам приходят новые, молодые светила. Хотя детали возникновения и гибели небесных тел оставались неясными, в основном эта модель казалась стройной и логически непротиворечивой. В таком виде классическая полицентрическая модель просуществовала в науке вплоть до начала XX в.

Однако в данной модели Вселенной было несколько недостатков. Закон всемирного тяготения объяснял центростремительное ускорение планет, но не говорил, откуда взялось стремление планет, а также любых материальных тел двигаться равномерно и прямолинейно. Для объяснения инерциального движения пришлось допустить существование в ней божественного «первотолчка», приведшего в движение все материальные тела. Кроме того, для коррекции орбит космических тел также допускалось вмешательство Бога. Таким образом, классическая полицентрическая модель Вселенной лишь частично носила научный характер, она не смогла дать научного объяснения происхождения Вселенной и поэтому была.

Новая модель Вселенной была создана в 1917 г. А. Эйнштейном. Ее основу составила релятивистская теория тяготения - общая теория относительности. Эйнштейн отказался от постулатов абсолютности и бесконечности пространства и времени, однако сохранил принцип стационарности, неизменности Вселенной во времени и ее конечности в пространстве. Свойства Вселенной, по мнению Эйнштейна, определяются распределением в ней гравитационных масс, Вселенная безгранична, но при этом замкнута в пространстве. Согласно этой модели, пространство однородно и изотропно, т.е. во всех направлениях имеет одинаковые свойства, материя распределена в нем равномерно, время бесконечно, а его течение не влияет на свойства Вселенной. На основании проведенных расчетов Эйнштейн сделал вывод, что мировое пространство представляет собой четырехмерную сферу.

При этом не следует представлять себе данную модель Вселенной в виде обычной сферы. Сферическое пространство есть сфера, но сфера четырехмерная, не поддающаяся наглядному представлению. По аналогии можно сделать вывод, что объем такого пространства конечен, как конечна поверхность любого шара, ее можно выразить конечным числом квадратных сантиметров. Поверхность всякой четырехмерной сферы также выражается конечным числом кубометров. Такое сферическое пространство не имеет границ, и в этом смысле оно безгранично. Летя в таком пространстве в одном направлении, мы в конце концов вернемся в исходную точку. Но в то же время муха, ползущая по поверхности шара, нигде не найдет границ и преград, запрещающих ей двигаться в любом избранном направлении. В этом смысле поверхность любого шара безгранична, хотя и конечна, т.е. безграничность и бесконечность - это разные понятия.

Итак, из расчетов Эйнштейна следовало, что наш мир является четырехмерной сферой. Объем такой Вселенной может быть выражен хотя и очень большим, но все же конечным числом кубометров. В принципе можно облететь всю замкнутую Вселенную, двигаясь все время в одном направлении. Такое воображаемое путешествие подобно земным кругосветным путешествиям. Но конечная по объему Вселенная в то же время безгранична, как не имеет границ поверхность любой сферы. Вселенная Эйнштейна содержит хотя и большое, но все же конечное число звезд и звездных систем, а поэтому к ней неприменимы фотометрический и гравитационный парадоксы. В то же время призрак тепловой смерти тяготеет и над Вселенной Эйнштейна. Такая Вселенная, конечная в пространстве, неизбежно идет к своему концу во времени. Вечность ей не присуща.

Таким образом, несмотря на новизну и даже революционность идей, Эйнштейн в своей космологической теории ориентировался на привычную классическую мировоззренческую установку статичности мира. Его более привлекал гармоничный и устойчивый мир, нежели мир противоречивый и неустойчивый.

Модель Вселенной Эйнштейна стала первой космологической моделью, базирующейся на выводах общей теории относительности. Это связано с тем, что именно тяготение определяет взаимодействие масс на больших расстояниях. Поэтому теоретическим ядром современной космологии выступает теория тяготения - общая теория относительности. Эйнштейн допускал в своей космологической модели наличие некой гипотетической отталкивающей силы, которая должна была обеспечить стационарность, неизменность Вселенной. Однако последующее развитие естествознания внесло существенные коррективы в это представление.

Пять лет спустя, в 1922 г., советский физик и математик А. Фридман на основе строгих расчетов показал, что Вселенная Эйнштейна не может быть стационарной, неизменной. При этом Фридман опирался на сформулированный им космологический принцип, который строится на двух предположениях: об изотропности и однородности Вселенной. Изотропность Вселенной понимается как отсутствие выделенных направлений, одинаковость Вселенной по всем направлениям. Однородность Вселенной понимается как одинаковость всех точек Вселенной: мы можем проводить наблюдения в любой из них и везде увидим изотропную Вселенную.

Фридман на основе космологического принципа доказал, что уравнения Эйнштейна имеют и другие, нестационарные решения, согласно которым Вселенная может либо расширяться, либо сжиматься. При этом речь шла о расширении самого пространства, т.е. об увеличении всех расстояний мира. Вселенная Фридмана напоминала раздувающийся мыльный пузырь, у которого и радиус, и площадь поверхности непрерывно увеличиваются.

Первоначально модель расширяющейся Вселенной носила гипотетический характер и не имела эмпирического подтверждения. Однако в 1929 г. американский астроном Э. Хаббл обнаружил эффект «красного смещения» спектральных линий (смещение линий к красному концу спектра). Это было истолковано как следствие эффекта Допплера - изменение частоты колебаний или длины волн из-за движения источника волн и наблюдателя по отношению друг к другу. «Красное смещение» было объяснено как следствие удаления галактик друг от друга со скоростью, возрастающей с расстоянием. Хаббл в 1929 г. вывел прямую линию на графике зависимости скоростей далеких галактик от расстояния до них, сформулировав так называемый закон Хаббла : согласно ему, скорости удаления v галактик возрастают пропорционально расстоянию до них: v= Н r, где Н - постоянная Хаббла. Сейчас считается, что H = 75 км/(с Мпк). Согласно последним измерениям увеличение скорости расширения составляет примерно 55 км/с на каждый миллион парсек.

В результате своих наблюдений Хаббл обосновал представление, что Вселенная - это мир галактик, что наша Галактика - не единственная в ней, что существует множество галактик, разделенных между собой огромными расстояниями. Вместе с тем Хаббл пришел к выводу, что межгалактические расстояния не остаются постоянными, а увеличиваются. Таким образом, в естествознании появилась концепция расширяющейся Вселенной.

Какое же будущее ждет нашу Вселенную? Фридман предложил три модели развития Вселенной.

В первой модели Вселенная расширяется медленно для того, чтобы в силу гравитационного притяжения между различными галактиками расширение Вселенной замедлялось и в конце концов прекращалось. После этого Вселенная начинала сжиматься. В этой модели пространство искривляется, замыкаясь на себя, образуя сферу.

Во второй модели Вселенная расширялась бесконечно, а пространство искривлено как поверхность седла и при этом бесконечно.

В третьей модели Фридмана пространство плоское и тоже бесконечное.

По какому из этих трех вариантов идет эволюция Вселенной, зависит от отношения гравитационной энергии к кинетической энергии разлетающегося вещества.

Если кинетическая энергия разлета вещества преобладает над гравитационной энергией, препятствующей разлету, то силы тяготения не остановят разбегания галактик, и расширение Вселенной будет носить необратимый характер. Этот вариант динамичной модели Вселенной называют открытой Вселенной.

Если же преобладает гравитационное взаимодействие, то темп расширения со временем замедлится до полной остановки, после чего начнется сжатие вещества вплоть до возврата Вселенной в исходное состояние сингулярности (точечный объем с бесконечно большой плотностью). Такой вариант модели назван осциллирующей, или закрытой, Вселенной.

В граничном случае, когда силы гравитации точно равны энергии разлета вещества, расширение не прекратится, но его скорость со временем будет стремиться к нулю. Через несколько десятков миллиардов лет после начала расширения Вселенной наступит состояние, которое можно назвать квазистационарным. Теоретически возможна и пульсация Вселенной.

Наблюдаемое нами разбегание галактик есть следствие расширения пространства замкнутой конечной Вселенной. При таком расширении пространства все расстояния во Вселенной увеличиваются подобно тому, как растут расстояния между пылинками на поверхности раздувающегося мыльного пузыря. Каждую из таких пылинок, как и каждую из галактик, можно с полным правом считать центром расширения. Когда Э. Хаббл показал, что далекие галактики разбегаются друг от друга со все возрастающей скоростью, был сделан однозначный вывод о том, что наша Вселенная расширяется. Но расширяющаяся Вселенная - это изменяющаяся Вселенная, мир со всей своей историей, имеющий начало и конец. Постоянная Хаббла позволяет оценить время, в течение которого продолжается процесс расширения Вселенной. Получается, что оно не менее 10 млрд. и не более 19 млрд. лет. Наиболее вероятным временем существования расширяющейся Вселенной считают 15 млрд. лет. Таков приблизительный возраст нашей Вселенной.

В настоящее время существует несколько космологических моделей, объясняющих отдельные аспекты возникновения материи во Вселенной, но они не объясняют причин и процесса рождения самой Вселенной. Из всей совокупности современных космологических теорий только теория Большого взрыва Г. Гамова смогла к настоящему времени удовлетворительно объяснить почти все факты, связанные с этой проблемой. Основные черты модели Большого взрыва сохранились до сих пор, хотя и были позже дополнены теорией инфляции, или теорией раздувающейся Вселенной, разработанной американскими учеными А. Гутом и П. Стейн-хардтом и дополненной советским физиком А.Д. Линде.

В 1948 г. выдающийся американский физик русского происхождения Г. Гамов выдвинул предположение, что физическая Вселенная образовалась в результате гигантского взрыва, происшедшего примерно 15 млрд. лет тому назад. Тогда все вещество и вся энергия Вселенной были сконцентрированы в одном крохотном сверхплотном сгустке. Если верить математическим расчетам, то в начале расширения радиус Вселенной был и вовсе равен нулю, а ее плотность равна бесконечности. Это начальное состояние называется сингулярностью - точечный объем с бесконечной плотностью. Известные законы физики в сингулярности не работают. В этом состоянии теряют смысл понятия пространства и времени, поэтому бессмысленно спрашивать, где находилась эта точка. Также современная наука ничего не может сказать о причинах появления такого состояния.

Тем не менее, согласно принципу неопределенности Гейзенберга вещество невозможно стянуть в одну точку, поэтому считается, что Вселенная в начальном состоянии имела определенную плотность и размеры. По некоторым подсчетам, если все вещество наблюдаемой Вселенной, которое оценивается примерно в 10 61 г, сжать до плотности 10 94 г/см 3 , то оно займет объем около 10 -33 см 3 . Ни в какой электронный микроскоп разглядеть ее было бы невозможно. Долгое время ничего нельзя было сказать о причинах Большого взрыва и переходе Вселенной к расширению. Но сегодня появились некоторые гипотезы, пытающиеся объяснить эти процессы. Они лежат в основе инфляционной модели развития Вселенной.

Основная идея концепции Большого взрыва состоит в том, что Вселенная на ранних стадиях возникновения имела неустойчивое вакуумоподобное состояние с большой плотностью энергии. Эта энергия возникла из квантового излучения, т.е. как бы из ничего. Дело в том, что в физическом вакууме отсутствуют фиксируемые частицы, поля и волны, но это не безжизненная пустота. В вакууме имеются виртуальные частицы, которые рождаются, имеют мимолетное бытие и тут же исчезают. Поэтому вакуум «кипит» виртуальными частицами и насыщен сложными взаимодействиями между ними. Причем, энергия, заключенная в вакууме, располагается как бы на его разных этажах, т.е. имеется феномен разностей энергетических уровней вакуума.

Пока вакуум находится в равновесном состоянии, в нем существуют лишь виртуальные (призрачные) частицы, которые занимают в долг у вакуума энергию на короткий промежуток времени, чтобы родиться, и быстро возвращают позаимствованную энергию, чтобы исчезнуть. Когда же вакуум по какой-либо причине в некоторой исходной точке (сингулярности) возбудился и вышел из состояния равновесия, то виртуальные частицы стали захватывать энергию без отдачи и превращались в реальные частицы. В конце концов в определенной точке пространства образовалось огромное множество реальных частиц вместе со связанной ими энергией. Когда же возбужденный вакуум разрушился, то высвободилась гигантская энергия излучения, а суперсила сжала частицы в сверхплотную материю. Экстремальные условия «начала», когда даже пространство-время было деформировано, предполагают, что и вакуум находился в особом состоянии, которое называют «ложным» вакуумом. Оно характеризуется энергией предельно высокой плотности, которой соответствует предельно высокая плотность вещества. В этом состоянии вещества в нем могут возникать сильнейшие напряжения, отрицательные давления, равносильные гравитационному отталкиванию такой величины, что оно вызвало безудержное и стремительное расширение Вселенной - Большой взрыв. Это и было первотолчком, «началом» нашего мира.

С этого момента начинается стремительное расширение Вселенной, возникают время и пространство. В это время идет безудержное раздувание «пузырей пространства», зародышей одной или нескольких вселенных, которые могут отличаться друг от друга своими фундаментальными константами и законами. Один из них стал зародышем нашей Метагалактики.

По разным оценкам, период «раздувания», идущий по экспоненте, занимает невообразимо малый промежуток времени - до 10 - 33 с после «начала». Он называется инфляционным периодом. За это время размеры Вселенной увеличились в 10 50 раз, от миллиардной доли размера протона до размеров спичечного коробка.

К концу фазы инфляции Вселенная была пустой и холодной, но когда инфляция иссякла, Вселенная вдруг стала чрезвычайно «горячей». Этот всплеск тепла, осветивший космос, обусловлен огромными запасами энергии, заключенными в «ложном» вакууме. Такое состояние вакуума очень неустойчиво и стремится к распаду. Когда распад завершается, отталкивание исчезает, заканчивается и инфляция. А энергия, связанная в виде множества реальных частиц, высвободилась в виде излучения, мгновенно нагревшего Вселенную до 10 27 К. С этого момента Вселенная развивалась согласно стандартной теории «горячего» Большого взрыва.

Адронная эра продолжалась 10 -7 с. На этом этапе температура понижается до 10 13 К. При этом появляются все четыре фундаментальных взаимодействия, прекращается свободное существование кварков, они сливаются в адроны, важнейшими среди которых являются протоны и нейтроны. Наиболее значимым событием стало глобальное нарушение симметрии, которое произошло в первые мгновения существования нашей Вселенной. Число частиц оказалось чуть больше, чем число античастиц. Причины такой асимметрии точно неизвестны до сих пор. В общем плазмоподобном сгустке на каждый миллиард пар частиц и античастиц на одну частицу оказывалось больше, ей не хватало пары для аннигиляции. Это и определило дальнейшее появление вещественной Вселенной с галактиками, звездами, планетами и разумными существами на некоторых из них.

Лептонная эра продолжалась до 1 с после начала. Температура Вселенной понизилась до 10 10 К. Главными ее элементами были лептоны, которые участвовали во взаимных превращениях протонов и нейтронов. В конце этой эры вещество стало прозрачным для нейтрино, они перестали взаимодействовать с веществом и с тех пор дожили до наших дней.

Эра излучения (фотонная эра) продолжалась 1 млн. лет. За это время температура Вселенной снизилась с 10 млрд. К до 3000 К. На протяжении данного этапа происходили важнейшие для дальнейшей эволюции Вселенной процессы первичного нуклеосинтеза - соединение протонов и нейтронов (их было примерно в 8 раз меньше, чем протонов) в атомные ядра. К концу этого процесса вещество Вселенной состояло на 75% из протонов (ядер водорода), около 25% составляли ядра гелия, сотые доли процента пришлись на дейтерий, литий и другие легкие элементы, после чего Вселенная стала прозрачной для фотонов, так как излучение отделилось от вещества и образовало то, что в нашу эпоху называется реликтовым излучением.

Затем почти 500 тысяч лет не происходило никаких качественных изменений - шло медленное остывание и расширение Вселенной. Вселенная, оставаясь однородной, становилась все более разреженной. Когда она остыла до 3000 К, ядра атомов водорода и гелия уже могли захватывать свободные электроны и превращаться при этом в нейтральные атомы водорода и гелия. В итоге образовалась однородная Вселенная, представлявшая собой смесь трех почти не взаимодействующих субстанций: барионного вещества (водород, гелий и их изотопы), лептонов (нейтрино и антинейтрино) и излучения (фотоны). К этому времени уже не было высоких температур и больших давлений. Казалось, в перспективе Вселенную ждет дальнейшее расширение и остывание, образование «лептонной пустыни» - что-то вроде тепловой смерти. Но этого не случилось; напротив, произошел скачок, создавший современную структурную Вселенную, который, по современным оценкам, занял от 1 до 3 миллиардов лет.

После Большого взрыва образовавшееся вещество и электромагнитное поле были рассеяны и представляли собой газопылевое облако и электромагнитный фон. Спустя I млрд. лет после начала образования Вселенной стали появляться галактики и звезды. К этому времени вещество уже успело охладиться, и в нем стали возникать стабильные флуктуации плотности, равномерно заполнявшие космос. В сформировавшейся материальной среде появлялись и получали развитие случайные уплотнения вещества. Силы тяготения внутри таких уплотнений проявляют себя заметнее, чем за их границами. Поэтому, несмотря на общее расширение Вселенной, вещество в уплотнениях притормаживается, а его плотность начинает постепенно возрастать. Продолжая сжиматься и теряя при этом энергию на излучение, уплотнившееся вещество в результате своей эволюции превращалось в современные галактики. Появление подобных уплотнений и стало началом рождения крупномасштабных космических структур - галактик , а затем и отдельных звезд.

Итак, первым условием появления галактик во Вселенной стало появление случайных скоплений и сгущений вещества в однородной Вселенной. Впервые подобная мысль была высказана И. Ньютоном, который утверждал, что если бы вещество было равномерно рассеяно по бесконечному пространству, то оно никогда бы не собралось в единую массу. Оно собиралось бы частями в разных местах бесконечного пространства. Данная идея Ньютона стала одним из краеугольных камней современной космогонии.

Второе условие появления галактик - наличие малых возмущений, флуктуаций вещества, ведущих к отклонению от однородности и изотропности пространства. Именно флуктуации и стали теми «затравками», которые привели к появлению более крупных уплотнений вещества. Эти процессы можно представить по аналогии с процессами образования облаков в атмосфере Земли. Известно, что водяной пар конденсируется на крохотных частичках - ядрах конденсации.

В середине XX в. были проведены расчеты, описывающие поведение таких сгущений. В частности, было доказано, что в расширяющейся Вселенной участки среды с большей плотностью расширяются медленнее, чем Вселенная в целом. Эти области постепенно отстают в расширении от остальной Вселенной, и в какой-то момент времени они совсем перестают расширяться. Изолированные участки вещества, как правило, очень велики по массе: она составляет в среднем 10 15 -10 16 масс Солнца. Данные массы под действием гравитации начинают сжиматься, причем, происходит это весьма своеобразно - анизотропно. Вначале исходные объекты имеют форму куба, а затем сжимаются в пластинку - «блин». Первоначально изолированные друг от друга плоские «блины» очень скоро вырастают в плотные слои. Эти слои пересекаются, и в процессе их взаимодействия образуется ячеисто-сетчатая структура, где стенками огромных пустот служат «блины». Отдельный «блин» представляет собой сверхскопление галактик и имеет уплощенную форму. Эти первичные сгустки, продолжая сжиматься, становятся сферически симметричными. Кроме того, внутри себя они одновременно фрагментируются на звезды.

Существуют предположения относительно того, почему чаще встречаются спиральные галактики (их около 80%), чем галактики других типов (эллиптические и неправильные). Возможно, спиральные галактики образуются в результате слияния протогалактик в скоплениях. Вначале образуется объект неправильной формы, затем за несколько сотен миллионов лет (немного по космическим меркам) неровности сглаживаются, и образуется массивная эллиптическая галактика. Постепенно в результате вращения такой галактики может образовываться дискообразная структура, которая со временем будет приобретать облик спиральной галактики. Подтверждением этой точки зрения является наличие галактик переходного типа, занимающих промежуточное положение между спиральными и эллиптическими галактиками.

Также есть предположение, почему в скоплениях галактик присутствует одна гигантская галактика, а остальные - мелкие. Считается, что вначале гигантская галактика лишь немного превосходила по своим размерам соседние галактики. Но по мере того, как галактика двигалась по спиральной траектории к центру скопления, она заглатывала более мелкие системы.

Были выдвинуты гипотезы, объясняющие вращение галактик. Сегодня считается, что на ранних стадиях эволюции протогалактики были гораздо больше, чем сейчас. Кроме того, космологическое расширение не успело их разогнать далеко друг от друга, поэтому между ними возникали значительные гравитационные силы. Эти силы принимали вид приливных взаимодействий, которые и вызывали вращение галактик.

Галактики существуют в виде групп (несколько галактик), скоплений (сотни галактик) и облаков скоплений (тысячи галактик). Одиночные галактики во Вселенной встречаются очень редко. Средние расстояния между галактиками в группах и скоплениях в 10-20 раз больше, чем размеры самых крупных галактик. Гигантские галактики имеют размеры до 18 млн. световых лет. Наиболее удаленные из наблюдаемых ныне галактик находятся на расстоянии 10 млрд. световых лет. Свет этих звезд идет к нам миллионы лет, поэтому мы наблюдаем их такими, какими они были много световых лет назад. Пространство между галактиками заполнено газом, пылью и разного рода излучениями. Основное вещество, составляющее межзвездный газ, - водород, на втором месте - гелий. Следует отметить, что водород и гелий - наиболее распространенные вещества не только в межзвездном пространстве, но и вообще во Вселенной.

Наша Галактика - Млечный путь - имеет форму диска с выпуклостью в центре - ядром, от которого отходят спиралевидные рукава. Ее толщина - 1,5 тыс. световых лет, а диаметр - 100 тыс. световых лет. Возраст нашей Галактики составляет около 15 млрд. лет. Она вращается довольно сложным образом: значительная часть ее галактической материи вращается дифференциально, как планеты вращаются вокруг Солнца, не обращая внимания на то, по каким орбитам движутся другие, достаточно далекие космические тела, и скорость вращения этих тел уменьшается с увеличением их расстояния от центра. Другая часть диска нашей Галактики вращается твердотельно, как музыкальный диск, крутящийся на проигрывателе. В этой части галактического диска угловая скорость вращения одинакова для любой точки. Наше Солнце находится в таком участке Галактики, в котором скорости твердотельного и дифференциального вращения равны. Такое место называется коротационным кругом. В нем создаются особые, спокойные и стационарные условия для процессов звездообразования.

Звезды рождаются из космического вещества в результате его конденсации под действием гравитационных, магнитных и других сил. Под влиянием сил всемирного тяготения из газового облака образуется плотный шар - протозвезда, эволюция которой проходит три этапа.

Первый этап эволюции связан с обособлением и уплотнением космического вещества. Второй представляет собой стремительное сжатие протозвезды. В какой-то момент давление газа внутри про-тозвезды возрастает, что замедляет процесс ее сжатия, однако температура во внутренних областях пока остается недостаточной для начала термоядерной реакции. На третьем этапе протозвезда продолжает сжиматься, а ее температура - повышаться, что приводит к началу термоядерной реакции. Давление газа, вытекающего из звезды, уравновешивается силой притяжения, и газовый шар перестает сжиматься. Образуется равновесный объект - звезда. Такая звезда является саморегулирующейся системой. Если температура внутри не повышается, то звезда раздувается. В свою очередь, остывание звезды приводит к ее последующему сжатию и разогреванию, ядерные реакции в ней ускоряются. Таким образом, температурный баланс оказывается восстановлен. Процесс преобразования протозвезды в звезду растягивается на миллионы лет, что сравнительно немного по космическим масштабам.

Рождение звезд в галактиках происходит непрерывно. Этот процесс компенсирует также непрерывно происходящую смерть звезд. Поэтому галактики состоят из старых и молодых звезд. Самые старые звезды сосредоточены в шаровых скоплениях, их возраст сравним с возрастом галактики. Эти звезды формировались, когда про-тогалактическое облако распадалось на все более мелкие сгустки. Молодые звезды (возраст около 100 тыс. лет) существуют за счет энергии гравитационного сжатия, которая разогревает центральную область звезды до температуры 10-15 млн. К и «запускает» термоядерную реакцию преобразования водорода в гелий. Именно термоядерная реакция является источником собственного свечения звезд.

Большое значение для характеристики звезд имеетдиаграмма Герцшпрунга - Рассела , которая показывает зависимость между абсолютной звёздной величиной, светимостью,спектральным классом и температурой поверхности звезды. Соответственно, диаграмму можно использовать для классификации звёзд и иллюстрации представлений о звёздной эволюции.

Диаграмма даёт возможность (хотя и не очень точно) найти абсолютную величину по спектральному классу - особенно для спектральных классов O-F. Для поздних классов это осложняется необходимостью сделать выбор между гигантом и карликом. Однако определённые различия в интенсивности некоторых линий позволяют уверенно сделать этот выбор. Около 90 % звёзд находятся на главной последовательности. Их светимость обусловлена ядерными реакциями превращения водорода в гелий. Выделяется также несколько ветвей проэволюционировавших звёзд - гигантов, в которых происходит горение гелия и более тяжёлых элементов. В левой нижней части диаграммы находятся полностью проэволюционировавшие белые карлики.

С момента начала термоядерной реакции, превращающей водород в гелий, звезда типа нашего Солнца переходит на так называемую главную последовательность диаграммы, в соответствии с которой будут изменяться с течением времени характеристики звезды: ее светимость, температура, радиус, химический состав и масса. После выгорания водорода в центральной зоне у звезды образуется гелиевое ядро. Водородные термоядерные реакции продолжают протекать, но только в тонком слое вблизи поверхности этого ядра. Ядерные реакции перемещаются на периферию звезды. Выгоревшее ядро начинает сжиматься, а внешняя оболочка - расширяться. Оболочка разбухает до колоссальных размеров, внешняя температура становится низкой, и звезда переходит в стадию красного гиганта. С этого момента звезда выходит на завершающий этап своей жизни. Наше Солнце это ждет примерно через 8 млрд. лет. При этом его размеры увеличатся до орбиты Меркурия, а может быть, и до орбиты Земли, так что от планет земной группы ничего не останется (или останутся оплавленные камни).

Для красного гиганта характерна низкая внешняя, но очень высокая внутренняя температура. При этом в термоядерные процессы включаются все более тяжелые ядра, что приводит к синтезу химических элементов и непрерывной потере красным гигантом вещества, которое выбрасывается в межзвездное пространство. Так, только за один год Солнце, находясь в стадии красного гиганта, может потерять одну миллионную часть своего веса. Всего за десять - сто тысяч лет от красного гиганта остается лишь центральное гелиевое ядро, и звезда становится белым карликом. Таким образом, белый карлик как бы вызревает внутри красного гиганта, а затем сбрасывает остатки оболочки, поверхностных слоев, которые образуют планетарную туманность, окружающую звезду.

Белые карлики невелики по своим размерам - их диаметр даже меньше диаметра Земли, хотя их масса сравнима с солнечной. Плотность такой звезды в миллиарды раз больше плотности воды. Кубический сантиметр его вещества весит больше тонны. Тем не менее, это вещество является газом, хотя и чудовищной плотности. Вещество, из которого состоит белый карлик, - очень плотный ионизированный газ, состоящий из ядер атомов и отдельных электронов.

В белых карликах термоядерные реакции практически не идут, они возможны лишь в атмосфере этих звезд, куда попадает водород из межзвездной среды. В основном эти звезды светят за счет огромных запасов тепловой энергии. Время их охлаждения - сотни миллионов лет. Постепенно белый карлик остывает, цвет его меняется от белого к желтому, а затем - к красному. Наконец, он превращается в черный карлик - мертвую холодную маленькую звезду размером с земной шар, который невозможно увидеть из другой планетной системы.

Несколько иначе развиваются более массивные звезды. Они живут всего несколько десятков миллионов лет. В них очень быстро выгорает водород, и они превращаются в красные гиганты всего за 2,5 млн. лет. При этом в их гелиевом ядре температура повышается до нескольких сотен миллионов градусов. Такая температура дает возможность для протекания реакций углеродного цикла (слияние ядер гелия, приводящее к образованию углерода). Ядро углерода, в свою очередь, может присоединить еще одно ядро гелия и образовать ядро кислорода, неона и т.д. вплоть до кремния. Выгорающее ядро звезды сжимается, и температура в нем поднимается до 3-10 млрд. градусов. В таких условиях реакции объединения продолжаются вплоть до образования ядер железа - самого устойчивого во всей последовательности химического элемента. Более тяжелые химические элементы - от железа до висмута также образуются в недрах красных гигантов, в процессе медленного захвата нейтронов. При этом энергия не выделяется, как при термоядерных реакциях, а, наоборот, поглощается. В результате сжатие звезды все убыстряется.

Образование же наиболее тяжелых ядер, замыкающих таблицу Менделеева, предположительно происходит в оболочках взрывающихся звезд, при их превращении в новые или сверхновые звезды, которыми становятся некоторые красные гиганты. В зашлакованной звезде нарушается равновесие, электронный газ более не способен противостоять давлению ядерного газа. Наступает коллапс - катастрофическое сжатие звезды, она «взрывается внутрь». Но если отталкивание частиц или какие-либо другие причины все же останавливают этот коллапс, происходит мощный взрыв - вспышка сверхновой звезды. Одновременно при этом в окружающее пространство сбрасывается не только оболочка звезды, но и до 90% ее массы, что приводит к образованию газовых туманностей. При этом светимость звезды увеличивается в миллиарды раз. Так, был зафиксирован взрыв сверхновой звезды в 1054 г. В китайских летописях было записано, что она видна днем, как Венера, в течение 23 дней. В наше время астрономы выяснили, что эта сверхновая звезда оставила после себя Крабовидную туманность, являющуюся мощным источником радиоизлучения.

Взрыв сверхновой звезды сопровождается выделением чудовищного количества энергии. При этом рождаются космические лучи, намного повышающие естественный радиационный фон и нормальные дозы космического излучения. Так, астрофизики подсчитали, что примерно раз в 10 млн. лет сверхновые звезды вспыхивают в непосредственной близости от Солнца, повышая естественный фон в 7 тысяч раз. При взрыве сверхновых идет сброс всей внешней оболочки звезды вместе с накопившимися в ней «шлаками» - химическими элементами, результатами деятельности нуклеосинтеза. Поэтому межзвездная среда сравнительно быстро обретает все известные на сегодняшний день химические элементы тяжелее гелия. Звезды следующих поколений, в том числе и Солнце, с самого начала содержат в своем составе и в составе окружающего их газопылевого облака примесь тяжелых элементов.

Хотя появление крупномасштабных структур во Вселенной привело к образованию множества разновидностей галактик и звезд, среди которых есть совершенно уникальные объекты, все же с точки зрения дальнейшей эволюции Вселенной особое значение имело появление звезд - красных гигантов. Именно в этих звездах в ходе процессов звездного нуклеосинтеза появилось большинство элементов таблицы Менделеева. Это открыло возможность для новых усложнений вещества. В первую очередь, появилась возможность образования планет и появления на некоторых из них жизни и, возможно, разума. Поэтому образование планет стало следующим этапом в эволюции Вселенной.



Что еще почитать