Количество проекций точки достаточное чтобы задать ее.  Начертательная геометрия. Теория

Рассмотрим профильную плоскость проекций. Проекции на две перпендикулярные плоскости обычно определяют положение фигуры и дают возможность узнать ее настоящие размеры и форму. Но бывают случаи, когда двух проекций оказывается недостаточно. Тогда применяют построение третьей проекции.

Третью плоскость проекции проводят так, чтобы она была перпендикулярна одновременно обеим плоскостям проекций (рис. 15). Третью плоскость принято называть профильной .

В таких построениях общую прямую горизонтальной и фронтальной плоскостей называют осью х , общую прямую горизонтальной и профильной плоскостей – осью у , а общую прямую фронтальной и профильной плоскостей – осью z . Точка О , которая принадлежит всем трем плоскостям, называется точкой начала координат.

На рисунке 15а показана точка А и три ее проекции. Проекцию на профильную плоскость (а́́ ) называют профильной проекцией и обозначают а́́ .

Для получения эпюра точки А, которая состоит из трех проекций а, а а , необходимо разрезать трехгранник, образующийся всеми плоскостями, вдоль оси у (рис. 15б) и совместить все эти плоскости с плоскостью фронтальной проекции. Горизонтальную плоскость необходимо вращать около оси х , а профильную плоскость – около оси z в направлении, указанном на рисунке 15 стрелкой.

На рисунке 16 изображено положение проекций а, а́ и а́́ точки А , полученное в результате совмещения всех трех плоскостей с плоскостью чертежа.

В результате разреза ось у встречается на эпюре в двух различных местах. На горизонтальной плоскости (рис. 16) она принимает вертикальное положение (перпендикулярно оси х ), а на профильной плоскости – горизонтальное (перпендикулярно оси z ).



На рисунке 16 три проекции а, а́ и а́́ точки А имеют на эпюре строго определенное положение и подчинены однозначным условиям:

а и а́ всегда должны располагаться на одной вертикальной прямой, перпендикулярной оси х ;

а́ и а́́ всегда должны располагаться на одной горизонтальной прямой, перпендикулярной оси z ;

3) при проведении через горизонтальную проекцию а горизонтальной прямой, а через профильную проекцию а́́ – вертикальной прямой построенные прямые обязательно пересекутся на биссектрисе угла между осями проекций, так как фигура Оа у а 0 а н – квадрат.

При выполнении построения трех проекций точки нужно проверять выполняемость всех трех условий для каждой точки.

Координаты точки

Положение точки в пространстве может быть определено с помощью трех чисел, называемых ее координатами . Каждой координате соответствует расстояние точки от какой-нибудь плоскости проекций.

Расстояние определяемой точки А до профильной плоскости является координатой х , при этом х = а˝А (рис. 15), расстояние до фронтальной плоскости – координатой у, причем у = а́А , а расстояние до горизонтальной плоскости – координатой z , при этом z = aA .

На рисунке 15 точка А занимает ширину прямоугольного параллелепипеда, и измерения этого параллелепипеда соответствуют координатам этой точки, т. е., каждая из координат представлена на рисунке 15 четыре раза, т. е.:

х = а˝А = Оа х = а у а = a z á;

y = а́А = Оа y = а x а = а z а˝;

z = aA = Oa z = а x а́ = а y а˝.

На эпюре (рис. 16) координаты х и z встречаются по три раза:

х = а z а ́= Оа x = а y а,

z = а x á = Oa z = а y а˝.

Все отрезки, которые соответствуют координате х (или z ), являются параллельными между собой. Координата у два раза представлена осью, расположенной вертикально:

y = Оа у = а х а

и два раза – расположенной горизонтально:

у = Оа у = а z а˝.

Данное различие появилось из-за того, что ось у присутствует на эпюре в двух различных положениях.

Следует учесть, что положение каждой проекции определяется на эпюре только двумя координатами, а именно:

1) горизонтальной – координатами х и у ,

2) фронтальной – координатами x и z ,

3) профильной – координатами у и z .

Используя координаты х, у и z , можно построить проекции точки на эпюре.

Если точка А задается координатами, их запись определяется так: А (х; у; z ).

При построении проекций точки А нужно проверять выполняемость следующих условий:

1) горизонтальная и фронтальная проекции а и а́ х х ;

2) фронтальная и профильная проекции а́ и а˝ должны располагаться на одном перпендикуляре к оси z , так как имеют общую координату z ;

3) горизонтальная проекция а так же удалена от оси х , как и профильная проекция а удалена от оси z , так как проекции а́ и а˝ имеют общую координату у .

В случае, если точка лежит в любой из плоскостей проекций, то одна из ее координат равна нулю.

Когда точка лежит на оси проекций, две ее координаты равны нулю.

Если точка лежит в начале координат, все три ее координаты равны нулю.

Проекции прямой

Для определения прямой необходимы две точки. Точку определяют две проекции на горизонтальную и фронтальную плоскости, т. е. прямая определяется с помощью проекций двух своих точек на горизонтальной и фронтальной плоскостях.

На рисунке 17 показаны проекции (а и á, b и ) двух точек А и В. С их помощью определяется положение некоторой прямой АВ . При соединении одноименных проекций этих точек (т. е. а и b, а́ и ) можно получить проекции аb и а́b́ прямой АВ.

На рисунке 18 показаны проекции обеих точек, а на рисунке 19 – проекции проходящей через них прямой линии.

Если проекции прямой определяются проекциями двух ее точек, то они обозначаются двумя рядом поставленными латинскими буквами, соответствующими обозначениям проекций точек, взятых на прямой: со штрихами для обозначения фронтальной проекции прямой или без штрихов – для горизонтальной проекции.

Если рассматривать не отдельные точки прямой, а ее проекции в целом, то данные проекции обозначаются цифрами.

Если некоторая точка С лежит на прямой АВ , ее проекции с и с́ находятся на одноименных проекциях прямой ab и а́b́ . Данную ситуацию поясняет рисунок 19.

Следы прямой

След прямой – это точка пересечения ее с некоторой плоскостью или поверхностью (рис. 20).

Горизонтальным следом прямой называется некоторая точка H , в которой прямая встречается с горизонтальной плоскостью, а фронтальным – точка V , в которой данная прямая встречается с фронтальной плоскостью (рис. 20).

На рисунке 21а изображен горизонтальный след прямой, а ее фронтальный след, – на рисунке 21б.

Иногда также рассматривается профильный след прямой, W – точка пересечения прямой с профильной плоскостью.

Горизонтальный след находится в горизонтальной плоскости, т. е. его горизонтальная проекция h совпадает с этим следом, а фронтальная лежит на оси х. Фронтальный след лежит во фронтальной плоскости, поэтому его фронтальная проекция ν́ совпадает с ним же, а горизонтальная v лежит на оси х.

Итак, H = h , и V = ν́. Следовательно, для обозначения следов прямой можно применять буквы h и ν́.

Различные положения прямой

Прямую называют прямой общего положения , если она не параллельна и не перпендикулярна ни одной плоскости проекций. Проекции прямой общего положения тоже не параллельны и не перпендикулярны осям проекций.

Прямые, которые параллельны одной из плоскостей проекций (перпендикулярны одной из осей). На рисунке 22 показана прямая, которая параллельна горизонтальной плоскости (перпендикулярная оси z), – горизонтальная прямая; на рисунке 23 показана прямая, которая параллельна фронтальной плоскости (перпендикулярна оси у ), – фронтальная прямая; на рисунке 24 показана прямая, которая параллельна профильной плоскости (перпендикулярна оси х ), – профильная прямая. Несмотря на то что каждая из данных прямых образует с одной из осей прямой угол, они не пересекают ее, а только скрещиваются с нею.

Из-за того что горизонтальная прямая (рис. 22) параллельна горизонтальной плоскости, ее фронтальная и профильная проекции будут параллельны осям, определяющим горизонтальную плоскость, т. е. осям х и у . Поэтому проекции áb́ || х и a˝b˝ || у z . Горизонтальная проекция ab может занимать любое положение на эпюре.

У фронтальной прямой (рис. 23) проекции аb || x и a˝b˝ || z , т. е. они перпендикулярны оси у , а потому в этом случае фронтальная проекция а́b́ прямой может занимать произвольное положение.

У профильной прямой (рис. 24) аb || у, а́b || z , и обе они перпендикулярны оси х. Проекция а˝b˝ может располагаться на эпюре любым образом.

При рассмотрении той плоскости, которая проецирует горизонтальную прямую на фронтальную плоскость (рис. 22), можно заметить, что она проецирует эту прямую и на профильную плоскость, т. е. она является плоскостью, которая проецирует прямую сразу на две плоскости проекций – фронтальную и профильную. Исходя из этого ее называют дважды проецирующей плоскостью . Таким же образом для фронтальной прямой (рис. 23) дважды проецирующая плоскость проецирует ее на плоскости горизонтальной и профильной проекций, а для профильной (рис. 23) – на плоскости горизонтальной и фронтальной проекций.

Две проекции не могут определить прямую. Две проекции 1 и профильной прямой (рис. 25) без уточнения на них проекций двух точек этой прямой не определят положения данной прямой в пространстве.

В плоскости, которая перпендикулярна двум заданным плоскостям симметрии, возможно существование бесчисленного множество прямых, для которых данные на эпюре 1 и являются их проекциями.

Если точка находится на прямой, то ее проекции во всех случаях лежат на одноименных проекциях этой прямой. Обратное положение не всегда справедливо для профильной прямой. На ее проекциях можно произвольным образом указать проекции определенной точки и не быть уверенным в том, что эта точка лежит на данной прямой.

Во всех трех частных случаях (рис. 22, 23 и 24) положения прямой по отношению к плоскости проекций произвольный ее отрезок АВ , взятый на каждой из прямых, проецируется на одну из плоскостей проекций без искажения, т. е. на ту плоскость, которой он параллелен. Отрезок АВ горизонтальной прямой (рис. 22) дает проекцию в натуральную величину на горизонтальную плоскость (аb = АВ ); отрезок АВ фронтальной прямой (рис. 23) – в натуральную величину на плоскость фронтальной плоскости V (áb́ = AB ) и отрезок АВ профильной прямой (рис. 24) – в натуральную величину на профильную плоскость W (a˝b˝ = АВ), т. е. представляется возможным измерить на чертеже натуральную величину отрезка.

Иначе говоря, с помощью эпюр можно определить натуральные размеры углов, которые рассматриваемая прямая образует с плоскостями проекций.

Угол, который составляет прямая с горизонтальной плос костью Н , принято обозначать буквой α, с фронтальной плоскостью – буквой β, с профильной плоскостью – буквой γ.

Любая из рассматриваемых прямых не имеет следа на параллельной ей плоскости, т. е. горизонтальная прямая не имеет горизонтального следа (рис. 22), фронтальная прямая не имеет фронтального следа (рис. 23), а профильная прямая – профильного следа (рис. 24).

В ряде случаев, для удобства решения задач необходимо использовать дополнительные плоскости проекций, перпендикулярные к уже имеющимся плоскостям проекций.

Если заданы горизонтальная и фронтальная проекции точки, то профильная проекция определяется по следующему алгоритму.

    Проводим линию проекционной связи перпендикулярную оси Oz .

    На данной линии проекционной связи откладываем отрезок А 1 А X Z А 3 .

Используя данное правило, можно строить проекции точек на дополнительные плоскости проекций (метод замен плоскостей).

Пусть дана точка А(А 2 1 ) и новая дополнительная плоскость проекций П 4 П 1 . Построить А 4 – проекцию точки А на П 4 .

Решение

а) Строим линию пересечения плоскостей П 1 и П 4 = x 1,4 ;

b) Через точку А проводим линию проекционной связи x 1,4 .

c) Строим проекцию А 4 , использую равенство отрезков А 2 А X 4 А X .

    Две проекции точки А 1 и А 4 лежат на одной линии проекционной связи перпендикулярной к оси X 1,4 .

    Расстояние от “новой” проекции точки А 4 до “новой” оси x 1,4 равно расстоянию от “старой” проекции точки А 2 до “старой” оси x 1,2 .

Конкурирующие точки

Конкурирующими точками называют пару точек, лежащих на одном проецирующем луче .

Из двух конкурирующих точек видимой является та точка, которая дальше распологается от плоскости проекций.

Точки А и В называют горизонтально конкурирующими.

Точки С и D называют фронтально конкурирующими.


Ввести дополнительную плоскость так, чтобы точки А и В стали конкурирующими.

План решения:

1 Строим ось x 1,4 A 1 , B 1 ;

2 Строим линию проекционной связи x 1,4 ;

3 На линии проекционной связи откладываем отрезки A x A 2 = A / x A 4 , B x B 2 = B / x B 4 .

Материал для самостоятельного изучения Моделирование объектов 2d-графики в графической системе компас Запуск системы компас и завершение работы

Система КОМПАС-3D-V8запускается аналогично другим программам. Для запуска системы необходимо выбрать меню \Пуск \ Все п рограммы \ АСКОН \ КОМПАС-3 D - V 8 и запустить КОМПАС . Можно выбрать указателем мыши на поле рабочего стола ярлык программы и дважды щелкнуть левой кнопкой мыши. Чтобы открыть документ, необходимо нажать кнопкуОткрыть на панели Стандартная . Чтобы начать новый документ нажмите кнопку Создать на панели Стандартная или выполните команду Файл > Создать и в открывшемся диалоговом окне выберите тип создаваемого документа и нажмите ОК .

Для завершения работы выбрать меню Файл \Выход , комбинацию клавиш Alt-F4 или щелкнуть на кнопке Закрыть.

Основные типы документов графической системы компас

Тип документа, создаваемого в системе КОМПАС, зависит от рода информации, хранящейся в этом документе. Каждому типу документа соответствует расширение имени файла и собственная пиктограмма.

1 Чертеж - основной тип графического документа в КОМПАС. Чертеж содержит графическое изображение изделия в одном или нескольких видах, основную надпись, рамку. Чертеж КОМПАС всегда содержит один лист заданного пользователем формата. Файл чертежа имеет расширение .cdw .

2 Фрагмент - вспомогательный тип графического документа в КОМПАС. Фрагмент отличается от чертежа отсутствием рамки, основной надписи и других объектов оформления конструкторского документа. Во фрагментах хранятся созданные типовые решения для последующего использования в других документах. Файл фрагмента имеет расширение .frw .

3 Текстовый документ (расширение файла . kdw );

4 Спецификация (расширение файла . spw );

5 Сборка (расширение файла . a 3 d );

6 Деталь - Трехмерное моделирование (расширение файла . m 3 d );

В этой статье мы найдем ответы на вопросы о том, как создать проекцию точки на плоскость и как определить координаты этой проекции. Опираться в теоретической части будем на понятие проецирования. Дадим определения терминам, сопроводим информацию иллюстрациями. Закрепим полученные знания при решении примеров.

Yandex.RTB R-A-339285-1

Проецирование, виды проецирования

Для удобства рассмотрения пространственных фигур используют чертежи с изображением этих фигур.

Определение 1

Проекция фигуры на плоскость – чертеж пространственной фигуры.

Очевидно, что для построения проекции существует ряд используемых правил.

Определение 2

Проецирование – процесс построения чертежа пространственной фигуры на плоскости с использованием правил построения.

Плоскость проекции - это плоскость, в которой строится изображение.

Использование тех или иных правил определяет тип проецирования: центральное или параллельное .

Частным случаем параллельного проецирования является перпендикулярное проецирование или ортогональное: в геометрии в основном используют именно его. По этой причине в речи само прилагательное «перпендикулярное» часто опускают: в геометрии говорят просто «проекция фигуры» и подразумевают под этим построение проекции методом перпендикулярного проецирования. В частных случаях, конечно, может быть оговорено иное.

Отметим тот факт, что проекция фигуры на плоскость по сути есть проекция всех точек этой фигуры. Поэтому, чтобы иметь возможность изучать пространственную фигуру на чертеже, необходимо получить базовый навык проецировать точку на плоскость. О чем и будем говорить ниже.

Напомним, что чаще всего в геометрии, говоря о проекции на плоскость, имеют в виду применение перпендикулярной проекции.

Произведем построения, которые дадут нам возможность получить определение проекции точки на плоскость.

Допустим, задано трехмерное пространство, а в нем - плоскость α и точка М 1 , не принадлежащая плоскости α . Начертим через заданную точку М 1 прямую а перпендикулярно заданной плоскости α . Точку пересечения прямой a и плоскости α обозначим как H 1 , она по построению будет служить основанием перпендикуляра, опущенного из точки М 1 на плоскость α .

В случае, если задана точка М 2 , принадлежащая заданной плоскости α , то М 2 будет служить проекцией самой себя на плоскость α .

Определение 3

– это либо сама точка (если она принадлежит заданной плоскости), либо основание перпендикуляра, опущенного из заданной точки на заданную плоскость.

Нахождение координат проекции точки на плоскость, примеры

Пускай в трехмерном пространстве заданы: прямоугольная система координат O x y z , плоскость α , точка М 1 (x 1 , y 1 , z 1) . Необходимо найти координаты проекции точки М 1 на заданную плоскость.

Решение очевидным образом следует из данного выше определения проекции точки на плоскость.

Обозначим проекцию точки М 1 на плоскость α как Н 1 . Согласно определению, H 1 является точкой пересечения данной плоскости α и прямой a , проведенной через точку М 1 (перпендикулярной плоскости). Т.е. необходимые нам координаты проекции точки М 1 – это координаты точки пересечения прямой a и плоскости α .

Таким образом, для нахождения координат проекции точки на плоскость необходимо:

Получить уравнение плоскости α (в случае, если оно не задано). Здесь вам поможет статья о видах уравнений плоскости;

Определить уравнение прямой a , проходящей через точку М 1 и перпендикулярной плоскости α (изучите тему об уравнении прямой, проходящей через заданную точку перпендикулярно к заданной плоскости);

Найти координаты точки пересечения прямой a и плоскости α (статья – нахождение координат точки пересечения плоскости и прямой). Полученные данные и будут являться нужными нам координатами проекции точки М 1 на плоскость α .

Рассмотрим теорию на практических примерах.

Пример 1

Определите координаты проекции точки М 1 (- 2 , 4 , 4) на плоскость 2 х – 3 y + z - 2 = 0 .

Решение

Как мы видим, уравнение плоскости нам задано, т.е. составлять его необходимости нет.

Запишем канонические уравнения прямой a , проходящей через точку М 1 и перпендикулярной заданной плоскости. В этих целях определим координаты направляющего вектора прямой a . Поскольку прямая а перпендикулярна заданной плоскости, то направляющий вектор прямой a – это нормальный вектор плоскости 2 х – 3 y + z - 2 = 0 . Таким образом, a → = (2 , - 3 , 1) – направляющий вектор прямой a .

Теперь составим канонические уравнения прямой в пространстве, проходящей через точку М 1 (- 2 , 4 , 4) и имеющей направляющий вектор a → = (2 , - 3 , 1) :

x + 2 2 = y - 4 - 3 = z - 4 1

Для нахождения искомых координат следующим шагом определим координаты точки пересечения прямой x + 2 2 = y - 4 - 3 = z - 4 1 и плоскости 2 х - 3 y + z - 2 = 0 . В этих целях переходим от канонических уравнений к уравнениям двух пересекающихся плоскостей:

x + 2 2 = y - 4 - 3 = z - 4 1 ⇔ - 3 · (x + 2) = 2 · (y - 4) 1 · (x + 2) = 2 · (z - 4) 1 · (y - 4) = - 3 · (z + 4) ⇔ 3 x + 2 y - 2 = 0 x - 2 z + 10 = 0

Составим систему уравнений:

3 x + 2 y - 2 = 0 x - 2 z + 10 = 0 2 x - 3 y + z - 2 = 0 ⇔ 3 x + 2 y = 2 x - 2 z = - 10 2 x - 3 y + z = 2

И решим ее, используя метод Крамера:

∆ = 3 2 0 1 0 - 2 2 - 3 1 = - 28 ∆ x = 2 2 0 - 10 0 - 2 2 - 3 1 = 0 ⇒ x = ∆ x ∆ = 0 - 28 = 0 ∆ y = 3 2 0 1 - 10 - 2 2 2 1 = - 28 ⇒ y = ∆ y ∆ = - 28 - 28 = 1 ∆ z = 3 2 2 1 0 - 10 2 - 3 2 = - 140 ⇒ z = ∆ z ∆ = - 140 - 28 = 5

Таким образом, искомые координаты заданной точки М 1 на заданную плоскость α будут: (0 , 1 , 5) .

Ответ: (0 , 1 , 5) .

Пример 2

В прямоугольной системе координат O x y z трехмерного пространства даны точки А (0 , 0 , 2) ; В (2 , - 1 , 0) ; С (4 , 1 , 1) и М 1 (-1, -2, 5). Необходимо найти координаты проекции М 1 на плоскость А В С

Решение

В первую очередь запишем уравнение плоскости, проходящей через три заданные точки:

x - 0 y - 0 z - 0 2 - 0 - 1 - 0 0 - 2 4 - 0 1 - 0 1 - 2 = 0 ⇔ x y z - 2 2 - 1 - 2 4 1 - 1 = 0 ⇔ ⇔ 3 x - 6 y + 6 z - 12 = 0 ⇔ x - 2 y + 2 z - 4 = 0

Запишем параметрические уравнения прямой a , которая будет проходить через точку М 1 перпендикулярно плоскости А В С. Плоскость х – 2 y + 2 z – 4 = 0 имеет нормальный вектор с координатами (1 , - 2 , 2) , т.е. вектор a → = (1 , - 2 , 2) – направляющий вектор прямой a .

Теперь, имея координаты точки прямой М 1 и координаты направляющего вектора этой прямой, запишем параметрические уравнения прямой в пространстве:

Затем определим координаты точки пересечения плоскости х – 2 y + 2 z – 4 = 0 и прямой

x = - 1 + λ y = - 2 - 2 · λ z = 5 + 2 · λ

Для этого в уравнение плоскости подставим:

x = - 1 + λ , y = - 2 - 2 · λ , z = 5 + 2 · λ

Теперь по параметрическим уравнениям x = - 1 + λ y = - 2 - 2 · λ z = 5 + 2 · λ найдем значения переменных x , y и z при λ = - 1: x = - 1 + (- 1) y = - 2 - 2 · (- 1) z = 5 + 2 · (- 1) ⇔ x = - 2 y = 0 z = 3

Таким образом, проекция точки М 1 на плоскость А В С будет иметь координаты (- 2 , 0 , 3) .

Ответ: (- 2 , 0 , 3) .

Отдельно остановимся на вопросе нахождения координат проекции точки на координатные плоскости и плоскости, которые параллельны координатным плоскостям.

Пусть задана точки М 1 (x 1 , y 1 , z 1) и координатные плоскости O x y , О x z и O y z . Координатами проекции этой точки на данные плоскости будут соответственно: (x 1 , y 1 , 0) , (x 1 , 0 , z 1) и (0 , y 1 , z 1) . Рассмотрим также плоскости, параллельные заданным координатным плоскостям:

C z + D = 0 ⇔ z = - D C , B y + D = 0 ⇔ y = - D B

И проекциями заданной точки М 1 на эти плоскости будут точки с координатами x 1 , y 1 , - D C , x 1 , - D B , z 1 и - D A , y 1 , z 1 .

Продемонстрируем, как был получен этот результат.

В качестве примера определим проекцию точки М 1 (x 1 , y 1 , z 1) на плоскость A x + D = 0 . Остальные случаи – по аналогии.

Заданная плоскость параллельна координатной плоскости O y z и i → = (1 , 0 , 0) является ее нормальным вектором. Этот же вектор служит направляющим вектором прямой, перпендикулярной к плоскости O y z . Тогда параметрические уравнения прямой, проведенной через точку M 1 и перпендикулярной заданной плоскости, будут иметь вид:

x = x 1 + λ y = y 1 z = z 1

Найдем координаты точки пересечения этой прямой и заданной плоскости. Подставим сначала в уравнение А x + D = 0 равенства: x = x 1 + λ , y = y 1 , z = z 1 и получим: A · (x 1 + λ) + D = 0 ⇒ λ = - D A - x 1

Затем вычислим искомые координаты, используя параметрические уравнения прямой при λ = - D A - x 1:

x = x 1 + - D A - x 1 y = y 1 z = z 1 ⇔ x = - D A y = y 1 z = z 1

Т.е., проекцией точки М 1 (x 1 , y 1 , z 1) на плоскость будет являться точка с координатами - D A , y 1 , z 1 .

Пример 2

Необходимо определить координаты проекции точки М 1 (- 6 , 0 , 1 2) на координатную плоскость O x y и на плоскость 2 y - 3 = 0 .

Решение

Координатной плоскости O x y будет соответствовать неполное общее уравнение плоскости z = 0 . Проекция точки М 1 на плоскость z = 0 будет иметь координаты (- 6 , 0 , 0) .

Уравнение плоскости 2 y - 3 = 0 возможно записать как y = 3 2 2 . Теперь просто записать координаты проекции точки M 1 (- 6 , 0 , 1 2) на плоскость y = 3 2 2:

6 , 3 2 2 , 1 2

Ответ: (- 6 , 0 , 0) и - 6 , 3 2 2 , 1 2

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Аппарат проецирования

Аппарат проецирования (рис. 1) включает в себя три плоскости проекций:

π 1 – горизонтальная плоскость проекций;

π 2 – фронтальная плоскость проекций;

π 3 – профильная плоскость проекций.

Плоскости проекций располагаются взаимно перпендикулярно (π 1 ^ π 2 ^ π 3 ), а их линии пересечения образуют оси:

Пересечение плоскостей π 1 и π 2 образуют ось (π 1 π 2 = );

Пересечение плоскостей π 1 и π 3 образуют ось 0Y (π 1 π 3 = 0Y );

Пересечение плоскостей π 2 и π 3 образуют ось 0Z (π 2 π 3 = 0Z ).

Точка пересечения осей (ОХ∩OY∩OZ=0), считается точкой начала отсчета (точка 0).

Так как плоскости и оси взаимно перпендикулярны, то такой аппарат аналогичен декартовой системе координат.

Плоскости проекций все пространство делят на восемь октантов (на рис. 1 они обозначены римскими цифрами). Плоскости проекций считаются непрозрачными, а зритель всегда находится в I -ом октанте.

Проецирование ортогональное с центрами проецирования S 1 , S 2 и S 3 соответственно для горизонтальной, фронтальной и профильной плоскостей проекций.

А .

Из центров проецирования S 1 , S 2 и S 3 выходят проецирующие лучи l 1 , l 2 и l 3 А

- А 1 А ;

- А 2 – фронтальная проекция точки А ;

- А 3 – профильная проекция точки А .

Точка в пространстве характеризуется своими координатами A (x,y,z ). Точки A x , A y и A z соответственно на осях 0X , 0Y и 0Z показывают координаты x, y и z точки А . На рис. 1 даны все необходимые обозначения и показаны связи между точкой А пространства, её проекциями и координатами.

Эпюр точки

Чтобы получить эпюр точки А (рис. 2), в аппарате проецирования (рис. 1) плоскость π 1 А 1 π 2 . Затем плоскость π 3 с проекцией точки А 3 , вращают против часовой стрелки вокруг оси 0Z , до совмещения её с плоскостью π 2 . Направление поворотов плоскостей π 2 и π 3 показано на рис. 1 стрелками. При этом прямые А 1 А х и А 2 А х перпендикуляре А 1 А 2 , а прямые А 2 А х и А 3 А х станут располагаться на общем к оси 0Z перпендикуляре А 2 А 3 . Эти прямые в дальнейшем будем называть соответственно вертикальной и горизонтальной линиями связей.

Следует отметить, что при переходе от аппарата проецирования к эпюру проектируемый объект исчезает, но вся информация о его форме, геометрических размерах и месте его положения в пространстве сохраняются.



А (x A , y A , z A x A , y A и z A в следующей последовательности (рис. 2). Эта последовательность называется методикой построения эпюра точки.

1. Ортогонально вычерчиваются оси OX, OY и OZ.

2. На оси OX x A точки А и получают положение точки А х .

3. Через точку А х перпендикулярно оси OX

А х по направлению оси OY откладывается численное значение координаты y A точки А А 1 на эпюре.

А х по направлению оси OZ откладывается численное значение координаты z A точки А А 2 на эпюре.

6. Через точку А 2 параллельно оси OX проводится горизонтальная линия связи. Пересечение этой линии и оси OZ даст положение точки А z .

7. На горизонтальной линии связи от точки А z по направлению оси OY откладывается численное значение координаты y A точки А и определяется положение профильной проекции точки А 3 на эпюре.

Характеристика точек

Все точки пространства подразделяются на точки частного и общего положений.

Точки частного положения. Точки, принадлежащие аппарату проецирования, называются точками частного положения. К ним относятся точки, принадлежащие плоскостям проекций, осям, началу координат и центрам проецирования. Характерными признаками точек частного положения являются:

Метаматематический – одна, две или все численные значения координат равны нулю и (или) бесконечности;

На эпюре – две или все проекции точки располагаются на осях и (или) располагаются в бесконечности.



Точки общего положения. К точкам общего положения относятся точки, не принадлежащие аппарату проецирования. Например, точка А на рис. 1 и 2.

В общем случае численные значения координат точки характеризует ее удаление от плоскости проекций: координата х от плоскости π 3 ; координата y от плоскости π 2 ; координата z от плоскости π 1 . Следует отметить, что знаки при численных значениях координат указывают на направление удаления точки от плоскостей проекций. В зависимости от сочетания знаков при численных значениях координат точки зависит в каком из октанов она находится.

Метод двух изображений

На практике, кроме метода полного проецирования используют метод двух изображений. Он отличается тем, что в этом методе исключается третья проекция объекта. Для получения аппарата проецирования метода двух изображений из аппарата полного проецирования исключается профильная плоскость проекций с ее центром проецирования (рис. 3). Кроме того, на оси назначается начало отсчета (точка 0 ) и из него перпендикулярно оси в плоскостях проекций π 1 и π 2 проводят оси 0Y и 0Z соответственно.

В этом аппарате все пространство делится на четыре квадранта. На рис. 3 они обозначены римскими цыфрами.

Плоскости проекций считаются непрозрачными, а зритель всегда находится в I -ом квадранте.

Рассмотрим работу аппарата на примере проецирования точки А .

Из центров проецирования S 1 и S 2 выходят проецирующие лучи l 1 и l 2 . Эти лучи проходят через точку А и пересекаясь с плоскостями проекций образуют ее проекции:

- А 1 – горизонтальная проекция точки А ;

- А 2 – фронтальная проекция точки А .

Чтобы получить эпюр точки А (рис. 4), в аппарате проецирования (рис. 3) плоскость π 1 с полученной проекцией точки А 1 вращают по часовой стрелке вокруг оси , до совмещения её с плоскостью π 2 . Направление поворота плоскости π 1 показана на рис. 3 стрелками. При этом на эпюре точки полученной методом двух изображений остается только одна вертикальная линия связи А 1 А 2 .

На практике построение эпюра точки А (x A , y A , z A ) осуществляется по численным значениям ее координат x A , y A и z A в следующей последовательности (рис. 4).

1. Вычерчивается ось OX и назначается начало отсчета (точка 0 ).

2. На оси OX откладывается численное значение координаты x A точки А и получают положение точки А х .

3. Через точку А х перпендикулярно оси OX проводится вертикальная линия связи.

4. На вертикальной линии связи от точки А х по направлению оси OY откладывается численное значение координаты y A точки А и определяется положение горизонтальной проекции точки А 1 OY не вычерчивается, а предполагается, что ее положительные значения располагаются ниже оси OX , а отрицательные выше.

5. На вертикальной линии связи от точки А х по направлению оси OZ откладывается численное значение координаты z A точки А и определяется положение фронтальной проекции точки А 2 на эпюре. Следует отметить, что на эпюре ось OZ не вычерчивается, а предполагается, что ее положительные значения располагаются выше оси OX , а отрицательные ниже.

Конкурирующие точки

Точки на одном проецирующем луче называются конкурирующими. Они в направлении проецирующего луча имеют общую для них проекцию, т.е. их проекции тождественно совпадают. Характерным признаком конкурирующих точек на эпюре является тождественное совпадение их одноименных проекций. Конкуренция заключается в видимости этих проекций относительно наблюдателя. Говоря другими словами, в пространстве для наблюдателя одна из точек видима, другая – нет. И, соответственно, на чертеже: одна из проекций конкурирующих точек видима, а проекция другой точки – невидима.

На пространственной модели проецирования (рис. 5) из двух конкурирующих точек А и В видима точка А по двум взаимно дополняющим признакам. Судя по цепочке S 1 →А→В точка А ближе к наблюдателю, чем точка В . И, соответственно, – дальше от плоскости проекций π 1 (т.е. z A > z A ).

Рис. 5 Рис.6

Если видима сама точка A , то видима и её проекция A 1 . По отношению к совпадающей с ней проекцией B 1 . Для наглядности и при необходимости на эпюре невидимые проекции точек принято заключать в скобки.

Уберем на модели точки А и В . Останутся их совпадающие проекции на плоскости π 1 и раздельные проекции – на π 2 . Условно оставим и фронтальную проекцию наблюдателя (⇩), находящегося в центре проецирования S 1 . Тогда по цепочке изображений ⇩ → A 2 B 2 можно будет судить о том, что z A > z B и что видима и сама точка А и её проекция А 1 .

Аналогично рассмотрим конкурирующие точки С и D по видимости относительно плоскости π 2 . Поскольку общий проецирующий луч этих точек l 2 параллелен оси 0Y , то признак видимости конкурирующих точек С и D определяется неравенством y C > y D . Следовательно, что точка D закрыта точкой С и соответственно проекция точки D 2 будет закрыта проекцией точки С 2 на плоскости π 2 .

Рассмотрим, как определяется видимость конкурирующих точек на комплексном чертеже (рис. 6).

Судя по совпадающим проекциям А 1 В 1 сами точки А и В находятся на одном проецирующем луче, параллельном оси 0Z . Значит сравнению подлежат координаты z A и z B этих точек. Для этого используем фронтальную плоскость проекций с раздельными изображениями точек. В данном случае z A > z B . Из этого следует, что видима проекция А 1 .

Точки C и D на рассматриваемом комплексном чертеже (рис. 6) так же находятся на одном проецирующем луче, но только параллельном оси 0Y . Поэтому из сравнения y C > y D делаем вывод, что видима проекция С 2 .

Общее правило . Видимость для совпадающих проекций конкурирующих точек определяется сравнением координат этих точек в направлении общего проецирующего луча. Видима та проекция точки, у которой эта координата больше. При этом сравнение координат ведется на плоскости проекций с раздельными изображениями точек.

Рассмотрим проекции точек на две плоскости, для чего возьмем две перпендикулярные плоскости (рис. 4), которые будем называть горизонтальной фронтальной и плоскостями. Линию пересечения данных плоскостей называют осью проекций. На рассмотренные плоскости спроецируем одну точку А с помощью плоской проекции. Для этого необходимо опустить из данной точки перпендикуляры Аа и A на рассмотренные плоскости.

Проекцию на горизонтальную плоскость называют горизонтальной проекцией точки А , а проекцию а? на фронтальную плоскость называют фронтальной проекцией .


Точки, которые подлежат проецированию, в начертательной геометрии принято обозначать с помощью больших латинских букв А, В, С . Для обозначения горизонтальных проекций точек применяют малые буквы а, b, с … Фронтальные проекции обозначают малыми буквами со штрихом вверху а?, b?, с?

Применяется также и обозначение точек римскими цифрами I, II,… а для их проекций – арабскими цифрами 1, 2… и 1?, 2?…

При повороте горизонтальной плоскости на 90° можно получить чертеж, в котором обе плоскости находятся в одной плоскости (рис. 5). Данная картина называется эпюром точки .


Через перпендикулярные прямые Аа и Аа? проведем плоскость (рис. 4). Полученная плоскость является перпендикулярной фронтальной и горизонтальной плоскостям, потому что содержит перпендикуляры к этим плоскостям. Следовательно, данная плоскость перпендикулярна линии пересечения плоскостей. Полученная прямая пересекает горизонтальную плоскость по прямой аа х, а фронтальную плоскость – по прямой а?а х. Прямые аах и а?а х являются перпендикулярными оси пересечения плоскостей. То есть Аааха? является прямоугольником.

При совмещении горизонтальной и фронтальной плоскостей проекции а и а? будут лежать на одном перпендикуляре к оси пересечения плоскостей, так как при вращении горизонтальной плоскости перпендикулярность отрезков аа х и а?а х не нарушится.

Получаем, что на эпюре проекции а и а? некоторой точки А всегда лежат на одном перпендикуляре к оси пересечения плоскостей.

Две проекции а и а? некоторой точки А могут однозначно определить ее положение в пространстве (рис. 4). Это подтверждается тем, что при построении перпендикуляра из проекции а к горизонтальной плоскости он пройдет через точку А. Точно так же перпендикуляр из проекции а? к фронтальной плоскости пройдет через точку А , т. е. точка А находится одновременно на двух определенных прямых. Точка А является их точкой пересечения, т. е. является определенной.

Рассмотрим прямоугольник Aaa х а? (рис. 5), для которого справедливы следующие утверждения:

1) Расстояние точки А от фронтальной плоскости равно расстоянию ее горизонтальной проекции а от оси пересечения плоскостей, т. е.

Аа? = аа х;

2) расстояние точки А от горизонтальной плоскости проекций равно расстоянию ее фронтальной проекции а? от оси пересечения плоскостей, т. е.

Аа = а?а х.

Иначе говоря, даже без самой точки на эпюре, используя только две ее проекции, можно узнать, на каком расстоянии от каждой из плоскостей проекций находится данная точка.

Пересечение двух плоскостей проекций разделяет пространство на четыре части, которые называют четвертями (рис. 6).

Ось пересечения плоскостей делит горизонтальную плоскость на две четверти – переднюю и заднюю, а фронтальную плоскость – на верхнюю и нижнюю четверти. Верхнюю часть фронтальной плоскости и переднюю часть горизонтальной плоскости рассматривают как границы первой четверти.


При получении эпюра вращается горизонтальная плоскость и совмещается с фронтальной плоскостью (рис. 7). В этом случае передняя часть горизонтальной плоскости совпадет с нижней частью фронтальной плоскости, а задняя часть горизонтальной плоскости – с верхней частью фронтальной плоскости.


На рисунках 8-11 показаны точки А, В, С, D, располагающиеся в различных четвертях пространства. Точка А расположена в первой четверти, точка В – во второй, точка С – в третьей и точка D – в четвертой.


При расположении точек в первой или четвертой четвертях их горизонтальные проекции находятся на передней части горизонтальной плоскости, а на эпюре они лягут ниже оси пересечения плоскостей. Когда точка расположена во второй или третьей четверти, ее горизонтальная проекция будет лежать на задней части горизонтальной плоскости, а на эпюре будет находиться выше оси пересечения плоскостей.


Фронтальные проекции точек, которые расположены в первой или второй четвертях, будут лежать на верхней части фронтальной плоскости, а на эпюре будут находиться выше оси пересечения плоскостей. Когда точка расположена в третьей или четвертой четверти, ее фронтальная проекция – ниже оси пересечения плоскостей.

Чаще всего при реальных построениях фигуру располагают в первой четверти пространства.

В некоторых частных случаях точка (Е ) может лежать на горизонтальной плоскости (рис. 12). В этом случае ее горизонтальная проекция е и сама точка будут совпадать. Фронтальная проекция такой точки будет находиться на оси пересечения плоскостей.

В случае, когда точка К лежит на фронтальной плоскости (рис. 13), ее горизонтальная проекция k лежит на оси пересечения плоскостей, а фронтальная k? показывает фактическое местонахождение этой точки.


Для подобных точек признаком того, что она лежит на одной из плоскостей проекций, служит то, что одна ее проекция находится на оси пересечения плоскостей.

Если точка лежит на оси пересечения плоскостей проекций, она и обе ее проекции совпадают.

Когда точка не лежит на плоскостях проекций, она называется точкой общего положения . В дальнейшем, если нет особых отметок, рассматриваемая точка является точкой общего положения.

2. Отсутствие оси проекций

Для пояснения получения на модели проекций точки на перпендикулярные плоскости проекций (рис. 4) необходимо взять кусок плотной бумаги в форме удлиненного прямоугольника. Его нужно согнуть между проекциями. Линия сгиба будет изображать ось пересечения плоскостей. Если после этого согнутый кусок бумаги вновь расправить, получим эпюр, похожий на тот, что изображен на рисунке.

Совмещая две плоскости проекций с плоскостью чертежа, можно не показывать линию сгиба, т. е. не проводить на эпюре ось пересечения плоскостей.

При построениях на эпюре всегда следует располагать проекции а и а? точки А на одной вертикальной прямой (рис. 14), которая перпендикулярна оси пересечения плоскостей. Поэтому, даже если положение оси пересечения плоскостей остается неопределенным, но ее направление определено, ось пересечения плоскостей может находиться на эпюре только перпендикулярно прямой аа? .


Если на эпюре точки нет оси проекций, как на первом рисунке 14 а, можно представить положение этой точки в пространстве. Для этого проведем в любом месте перпендикулярно прямой аа? ось проекции, как на втором рисунке (рис. 14) и согнем чертеж по этой оси. Если восстановить перпендикуляры в точках а и а? до их пересечения, можно получить точку А . При изменении положения оси проекций получаются различные положения точки относительно плоскостей проекций, но неопределенность положения оси проекций не влияет на взаимное расположение нескольких точек или фигур в пространстве.

3. Проекции точки на три плоскости проекций

Рассмотрим профильную плоскость проекций. Проекции на две перпендикулярные плоскости обычно определяют положение фигуры и дают возможность узнать ее настоящие размеры и форму. Но бывают случаи, когда двух проекций оказывается недостаточно. Тогда применяют построение третьей проекции.

Третью плоскость проекции проводят так, чтобы она была перпендикулярна одновременно обеим плоскостям проекций (рис. 15). Третью плоскость принято называть профильной .

В таких построениях общую прямую горизонтальной и фронтальной плоскостей называют осью х , общую прямую горизонтальной и профильной плоскостей – осью у , а общую прямую фронтальной и профильной плоскостей – осью z . Точка О , которая принадлежит всем трем плоскостям, называется точкой начала координат.


На рисунке 15а показана точка А и три ее проекции. Проекцию на профильную плоскость (а?? ) называют профильной проекцией и обозначают а?? .

Для получения эпюра точки А, которая состоит из трех проекций а, а а , необходимо разрезать трехгранник, образующийся всеми плоскостями, вдоль оси у (рис. 15б) и совместить все эти плоскости с плоскостью фронтальной проекции. Горизонтальную плоскость необходимо вращать около оси х , а профильную плоскость – около оси z в направлении, указанном на рисунке 15 стрелкой.

На рисунке 16 изображено положение проекций а, а? и а?? точки А , полученное в результате совмещения всех трех плоскостей с плоскостью чертежа.

В результате разреза ось у встречается на эпюре в двух различных местах. На горизонтальной плоскости (рис. 16) она принимает вертикальное положение (перпендикулярно оси х ), а на профильной плоскости – горизонтальное (перпендикулярно оси z ).


На рисунке 16 три проекции а, а? и а?? точки А имеют на эпюре строго определенное положение и подчинены однозначным условиям:

а и а? всегда должны располагаться на одной вертикальной прямой, перпендикулярной оси х ;

а? и а?? всегда должны располагаться на одной горизонтальной прямой, перпендикулярной оси z ;

3) при проведении через горизонтальную проекцию а горизонтальной прямой, а через профильную проекцию а?? – вертикальной прямой построенные прямые обязательно пересекутся на биссектрисе угла между осями проекций, так как фигура Оа у а 0 а н – квадрат.

При выполнении построения трех проекций точки нужно проверять выполняемость всех трех условий для каждой точки.

4. Координаты точки

Положение точки в пространстве может быть определено с помощью трех чисел, называемых ее координатами . Каждой координате соответствует расстояние точки от какой-нибудь плоскости проекций.

Расстояние определяемой точки А до профильной плоскости является координатой х , при этом х = а?А (рис. 15), расстояние до фронтальной плоскости – координатой у, причем у = а?А , а расстояние до горизонтальной плоскости – координатой z , при этом z = aA .

На рисунке 15 точка А занимает ширину прямоугольного параллелепипеда, и измерения этого параллелепипеда соответствуют координатам этой точки, т. е., каждая из координат представлена на рисунке 15 четыре раза, т. е.:

х = а?А = Оа х = а у а = a z a?;

y = а?А = Оа y = а x а = а z а?;

z = aA = Oa z = а x а? = а y а?.

На эпюре (рис. 16) координаты х и z встречаются по три раза:

х = а z а?= Оа x = а y а,

z = а x a? = Oa z = а y а?.

Все отрезки, которые соответствуют координате х (или z ), являются параллельными между собой. Координата у два раза представлена осью, расположенной вертикально:

y = Оа у = а х а

и два раза – расположенной горизонтально:

у = Оа у = а z а?.

Данное различие появилось из-за того, что ось у присутствует на эпюре в двух различных положениях.

Следует учесть, что положение каждой проекции определяется на эпюре только двумя координатами, а именно:

1) горизонтальной – координатами х и у ,

2) фронтальной – координатами x и z ,

3) профильной – координатами у и z .

Используя координаты х, у и z , можно построить проекции точки на эпюре.

Если точка А задается координатами, их запись определяется так: А (х; у; z ).

При построении проекций точки А нужно проверять выполняемость следующих условий:

1) горизонтальная и фронтальная проекции а и а? х х ;

2) фронтальная и профильная проекции а? и а? должны располагаться на одном перпендикуляре к оси z , так как имеют общую координату z ;

3) горизонтальная проекция а так же удалена от оси х , как и профильная проекция а удалена от оси z , так как проекции а? и а? имеют общую координату у .

В случае, если точка лежит в любой из плоскостей проекций, то одна из ее координат равна нулю.

Когда точка лежит на оси проекций, две ее координаты равны нулю.

Если точка лежит в начале координат, все три ее координаты равны нулю.



Что еще почитать