Формула связи ускорений и масс взаимодействующих тел. Взаимодействие тел. Слабые силы и радиоактивность

Взаимодействие тел. Опыт показывает, что при сближении тел (или систем тел) характер их поведения меняется. Поскольку эти изменения носят взаимный характер, говорят, что тела взаимодействуют друг с другом . При разведении тел на очень большие расстояния (на бесконечность) все известные на сегодняшний день взаимодействия исчезают.

Галлилей первым дал правильный ответ на вопрос, какое движение характерно для свободных (т.е. не взаимодействующих тел). Вопреки существующему тогда мнению, что свободные тела “стремятся” к состоянию покоя (), он утверждал, что при отсутствии взаимодействия тела находятся в состоянии равномерного движения (
), включающего покой как частный случай.

Инерциальные системы отсчета. В рамках формального математического подхода, реализуемого в кинематике, утверждение Галилея выглядит бессмысленным, поскольку равномерное в одной системе отсчета движение может оказаться ускоренным в другой, которая “ничем не хуже” исходной. Наличие взаимодействия позволяет выделить особый класс систем отсчета, в которых свободные тела движутся без ускорения (в этих системах большинство законов природы имеют наиболее простую форму). Такие системы называются инерциальными.

Все инерциальные системы эквивалентны друг другу, в любой из них законы механики проявляются одинаково. Это свойство было также отмечено Галилеем в сформулированном им принципе относительности: никаким механическим опытом в замкнутой (т.е. не сообщающейся с внешним миром) системе отсчета невозможно установить покоится ли она или равномерно движется. Любая система отсчета, равномерно движущаяся относительно инерциальной тоже является инерциальной.

Между инерциальными и неинерциальными системами отсчета существует принципиальное отличие: находящийся в замкнутой системе наблюдатель способен установить факт движения с ускорением последних, “не выглядывая наружу”(напр. при разгоне самолета пассажиры ощущают, что их “вдавливает” в кресла). В дальнейшем будет показано, что в неинерциальных системах геометрия пространства перестает быть евклидовой.

Законы Ньютона как основа классической механики. Сформулированные И.Ньютоном три закона движения в принципе позволяют решить основную задачу механики , т.е. по известным начальному положению и скорости тела определить его положение и скорость в произвольный момент времени.

Первый закон Ньютона постулирует существование инерциальных систем отсчета.

Второй закон Ньютона утверждает, что в инерциальных системах ускорение тела пропорционально приложенной силе , физической величине, являющейся количественной мерой взаимодействия. Величину силы, характеризующей взаимодействие тел, можно определить, например, по деформации упругого тела, дополнительно введенного в систему так, что взаимодействие с ним полностью компенсирует исходное. Коэффициент пропорциональности между силой и ускорением называют массой тела :

(1) F= ma

Под действием одинаковых сил тела с большей массой приобретают меньшие ускорения. Массивные тела при взаимодействии в меньшей степени меняют свои скорости, “стремясь сохранить естественное движение по инерции”. Иногда говорят, что масса является мерой инертности тел (рис. 4_1).

К классическим свойствам массы следует отнести 1) ее положительность (тела приобретают ускорения в направлении приложенных сил), 2) аддитивность (масса тела равна сумме масс его частей), 3) независимость массы от характера движения (напр. от скорости).

Третий закон утверждает, что взаимодействия оба объекта испытывают действия сил, причем эти силы равны по величине и противоположно направлены.

Типы фундаментальных взаимодействий. Попытки классификации взаимодействий привели к идее выделения минимального набора фундаментальных взаимодействий , при помощи которых можно объяснить все наблюдаемые явления. По мере развития естествознания этот набор менялся. В ходе экспериментальных исследований периодически обнаруживались новые явления природы, не укладывающиеся в принятый фундаментальный набор, что приводило к его расширению (например, открытие структуры ядра потребовало введения ядерных сил). Теоретические же осмысление, вцелом стремящееся к единому, максимально экономному описанию наблюдаемого многообразия, неоднократно приволило к “великим объединениям” внешне совершенно несхожих явлений природы (ньютон понял,что падение яблока и движение планет вокруг Солнца являются результатами проявления гравитационных взаимодействий, Эйнштейн установил единую природу электрических и магнитных взаимодействий, Бутлеров опроверг утверждения о различной природе органических и неорганических веществ).

В настоящее время принят набор из четырех типов фундаментальных взаимодействий :гравитационные, электромагнитные, сильное и слабые ядерные . Все остальные, известные на сегодняшний день, могут быть сведены к суперпозиции перечисленных.

Гравитационные взаимодействия обусловлены наличием у тел массы и являются самыми слабыми из фундаментального набора. Они доминируют на расстояниях космических масштабов (в мега-мире).

Электромагнитные взаимодействия обусловлены специфическим свойством ряда элементарных частиц, называемым электрическим зарядом. Играют доминирующую роль в макро мире и микромире вплоть на расстояниях, превосходящих характерные размеры атомных ядер.

Ядерные взаимодействия играют доминирующую роль в ядерных процессах и проявляются лишь на расстояниях, сравнимых с размером ядра, где классическое описание заведомо неприменимо.

В настоящее время стали весьма популярны рассуждения о биополе , при помощи которого “объясняется” ряд не очень надежно установленных на эксперименте явлений природы, связанных с биологическими объектами. Серьезное отношение к понятию биополя зависит от того, какой конкретный смысл. Вкладывается в этот термин. Если понятие биополя используется для описания взаимодействий с участием биологических объектов, сводящихся к четырем фундаментальным, такой подход не вызывает принципиальных возражений, хотя введение нового понятия для описания “старых” явлений противоречит общепринятой в естествознании тенденции к минимизации теоретического описания. Если же под биополем понимается новый тип фундаментальных взаимодействий, проявляющийся на макроскопическом уровне (возможности существования которого априорно, очевидно, отрицать бессмысленно), то для столь далеко идущих выводов необходимы очень серьезные теоретические и экспериментальные обоснования, сделанные на языке и методами современного естествознания, которые до настоящего времени представлены не были.

Законы Ньютона и основная задача механики. Для решения основной задачи механики (определение положения тела в произвольный момент времени по известным начальному положению и скорости) достаточно найти ускорение тела как функцию времени a (t). Эту задачу решают законы Ньютона (1) при условии известных сил. В общем случае силы могут зависеть от времени, положения и скорости тела:

(2) F=F (r,v, t) ,

т.е. для нахождения ускорения тела необходимо знать его положение и скорость. Описанная ситуация в математике носит название дифференциального уравнения второго порядка :

(3)
,

(4)

В математике показывается, что задача (3-4) при наличии двух начальных условий (положение и скорость в начальный момент времени) всегда имеет решение и притом единственное . Т.о. основная задача механики в принципе всегда имеет решение, однако найти его часто бывает весьма трудно.

Детерминизм Лапласа . Немецкий математик Лаплас применил аналогичную теорему о существовании и единственности решения задачи типа (3-4) для системы из конечного числа уравнений для описания движения всех взаимодействующих друг с другом частиц реального мира и пришел к выводу о принципиальной возможности расчета положения всех тел в любой момент времени. Очевидно, что это означало возможность однозначного предсказанная будущего (хотя бы в принципе) и полную детерменированность (предопределенность) нашего мира. Сделанное утверждение, носящее скорее философский, а не естественно научный характер, получило название детерминизма Лапласа . При желании из него можно было сделать весьма далеко идущие философские и социальные выводы о невозможности влиять на предопределенный ход событий. Ошибочность этого учения состояла в том, что атомы или элементарные частицы (“материальные точки”, из которых составлены реальные тела) на самом деле не подчиняются классическому закону движения (3), верному лишь для макроскопических объектов (т.е. обладающих достаточно большими массами и размерами). Правильное с точки зрения сегодняшней физики описание движения во времени микроскопических объектов, какими являются составляющие макроскопические тела атомы и молекулы, дается уравнениями квантовой механики, , позволяющими определить только вероятность нахождения частицы в заданной точке, но принципиально не дающего возможности расчета траекторий движения для последующих моментов времени.

Вам уже известно, что тела, если бы на них не действовали другие тела, трение и сопротивление воздуха, постоянно бы двигались или находились в состоянии покоя.
Давайте проведем опыт.
Прикрепленную к тележке пластину согнем и перевяжем нитью. Если поджечь нить — пластина разогнется, но при этом тележка окажется на том же месте.
Повторим этот опыт с двумя одинаковыми тележками. К согнутой пластине приставим еще одну такую же тележку. После того, как перегорит нить и пластина выпрямится, тележки переместятся на некоторое расстояние друг от друга. При действии одного тела на другое их скорость изменилась.
Таким образом, тела меняют свою скорость только при взаимодействии, то есть при действии одного тела на другое.
Понаблюдайте за игрой в бильярд или керлинг. При действии одного тела на другое, то есть при их взаимодействии, скорость изменяется у обоих тел.
Вспомните известный мультфильм «Приключения капитана Врунгеля». С помощью бутылок с шампанским он смог продолжил свой путь на яхте «Беда». Во время взаимодействия пробки от шампанского и самой бутылки оба этих тела двигались в противоположные стороны, тем самым придавали яхте движение вперед.
Проведем еще один опыт с тележками. Теперь на одну из тележек поставим дополнительный груз. Понаблюдаем, как изменятся скорости тележек при таких условиях.
Многие из вас, используя свой жизненный опыт, уже догадались, что произойдет.
После того как перегорит нить, тележки переместятся на некоторое расстояние. Конечно, тележка с дополнительным грузом изменит свою скорость меньше, чем без груза. Сравнивая изменение скоростей после взаимодействия, можем судить об их массах: если скорость одной тележки в три раза больше, то ее масса, соответственно, будет меньше в три раза.
Рассмотрим примеры.
По дороге движутся два автомобиля с одинаковой скоростью. Один автомобиль грузовой, другой - легковой. Какому из них понадобиться больше времени для того, чтобы остановиться?
Очевидно, что больше времени для остановки понадобиться грузовому автомобилю.
Какую тележку тяжелее сдвинуть с места: пустую или полностью нагруженную? Тяжелее сдвинуть с места нагруженную тележку.
Сделаем вывод: тело большей массы более инертно, то есть дольше «пытается» сохранять свою скорость неизменной. Тело меньшей массы менее инертно, так как его скорость изменяется больше.
Таким образом, мерой инертности тел является масса тела.
Масса тела — это физическая величина, которая является мерой инертности тела.
Массу тела можно найти не только сравнивая изменение скоростей тел при их взаимодействии, но и путем взвешивания.
Массу обозначают буквой m «эм».
В международной системе единиц СИ за единицу массы принят один килограмм.
Килограмм — это масса эталона. Международный эталон килограмма хранится во Франции. В соответствии с эталоном изготовлено 40 точнейших копий, одна из которых хранится в России, а именно в Санкт-Петербурге в Институте метрологии.
Для измерения массы используют и другие единицы: тонна, грамм, миллиграмм.
1т=1000кг
1 кг=1 000г
1кг=1 000 000мг
1г=0,001кг
1 мг=0,000001кг
Массу тела можно определить при помощи весов. В жизни вам встречались различные виды весов:
-рычажные,
-пружинные,
-электронные.
Мы будем использовать лабораторные весы. Их еще называют рычажными весами. Принцип взвешивания на рычажных весах заключается в уравновешивании. На одну чашу весов помещают тело, массу которого необходимо узнать. На другую чашу весов помещают гири, масса которых нам известна.
В состоянии равновесия суммарная масса гирь будет равна массе взвешиваемого тела.
При взвешивании должны соблюдаться определенные правила:
1. Проверьте чаши весов перед началом взвешивания: они должны находиться в равновесии.
2. Взвешиваемое тело положите на левую чашу весов, а гири на правую.
3. Уравновесив обе чаши, подсчитайте общую массу гирь, которая вам понадобилась.
Запомните, что при взаимодействии двух тел их скорости изменяются. Скорость изменяется больше у того тела, масса которого меньше и наоборот. Измерив скорости, мы сможем вычислить массу тела. А также массу тела мы можем определить с помощью весов.

Цели урока:

  • Рассмотреть понятие взаимодействия тела и массы.

Задачи урока:

  • Показать на опытах, как изменяются скорости тел при их взаимодействии. Ввести понятие массы тела как физической величины , единицы измерения массы в системе СИ.
  • Развивать умение находить законы физики в окружающем мире, объяснять явления и процессы из повседневной жизни с точки зрения физики. Развивать внимание, логику.
  • Воспитывать аккуратность в записях, точность в изложении физического материала, в формулировках терминов .

Основные термины:

  • Взаимодействие - действие тел друг на друга.
  • Масса – это физическая величина, характеризующая инертность тела.

ХОД УРОКА

Повторение темы "Инерция"

Ситуативная игра: Ученики – пассажиры автобуса. Изобразите ситуацию:

Работа в парах. Вопросы задаются ребятам по вариантам, они отвечают на них друг другу в паре, затем озвучивают свои ответы перед классом, исправляют ошибки, устраняют недочеты, дополняют ответы товарищей:

Взаимодействие тел

Вы уже знаете, что если на тело (зеленый шарик) действует другое тело (красный шарик), то оно изменяет свою скорость рисунок 4. Говорят, что первое тело подействовало на второе.
А теперь понаблюдаем за красным шариком, который катится с желоба. Оказывается, он тоже изменил свою скорость. Говорят, что второе тело действует на первое.

Подкатим тележки друг к другу, согнув пластинки, и перевяжем их тонкой нитью. Если ее пережечь, пластинки начнут распрямляться, отталкивая друг друга. При этом тележки разъедутся в стороны, приобретя некоторые скорости. Говорят, что произошло взаимодействие тележек. Просмотреть эту ситуацию Вы можете на видео №1. Если масса гирь на правой тележке мала, то за время взаимодействия она приобретает большую скорость , чем тележка с телом. И наоборот: при избыточной массе гирь скорость тележки с ними будет меньше, чем скорость тележки с телом.
Видео 1. Взаимодействие тележек.


Определение: Действие тел друг на друга называют взаимодействием.

При взаимодействии оба тела меняют свою скорость.
Примеры:
Человек прыгнул с лодки, значит, он приобрел скорость. Но лодка тоже изменила свою скорость – она отплыла назад. Рисунок 6.
При стрельбе из пушки и пушка, и снаряд приобретают скорости: снаряд летит вперед, пушка откатывается назад. Рисунок 7.

Выясним, от чего зависит изменение скорости тел при их взаимодействии?
Демонстрация: прибор для изучения закона сохранения импульса.
Опыт 1: Шарики на цилиндрах одинаковые и скорости их при взаимодействии тоже одинаковые (сравниваем по расстояниям, которые пролетели шарики).
Как вы думаете, изменятся ли скорости шариков, если один пластмассовый шарик поменять на стальной? Как?
Давайте проверим нашу гипотезу на опыте.

Опыт 2: Шарики разные и скорости их при взаимодействии тоже разные, причем скорость металлического шарика меньше скорости пластмассового шарика.
Говорят, что одно тело тяжелее другого, более инертно (т. е. дольше стремится сохранить свою скорость), одно тело массивнее другого, т. е. имеет большую массу.

Рис. 10.
Взаимодействие тел приводит к изменению их скорости.
Скорости, приобретенные телами после взаимодействия, зависят от их массы.
По взаимодействию тел можно судить об их массе.

Масса

Масса – это физическая величина, характеризующая инертность тела. Чем больше масса тела, тем оно более инертно.
Каждое тело имеет массу – капля воды, человек, Солнце, пылинка и т. д.
Обозначение массы – m.
Единицы измерения массы в системе СИ: = 1 кг.
Другие единицы измерения массы: 1 т = 1000 кг; 1 г = 0, 001 кг; 1 мг = 0,000001 кг
Эталон массы изготовлен из платиново-иридиевого сплава, имеет форму цилиндра высотой примерно 39 мм, и хранится в городе Севре во Франции. (Рисунок 11). С эталона изготовлены копии: в России хранится копия №12, в США – № 20.

Зная массу одного из тел, можно всегда оценить массу другого:
- если при взаимодействии скорости тела меняются одинаково, то массы тел равны.
- если нет, то массу второго тела можно вычислить из соотношения скоростей.

Рассмотрим на рисунке 13 измерение массы методом взаимодействия или взвешивания на весах.

На видео №2 Вы можете просмотреть измерение массы тела на рычажных весах.

На видео №3 просмотрите веселую задачку как измерить массу тела


Способы определения массы тела:
Взаимодействие с эталоном массы (по примерам из опытов). Пусть нам известна масса эталона (1 кг), скорость эталона v1 и скорость тела v2. Чтобы узнать массу тела m, надо составить уравнение m1v1 = m2v2, из которого выразить массу тела: m2 = m1v1 / v .Учитывая, что m1 = 1 кг, получаем m = v1 / v2. Этот способ, конечно, не удобен с практической точки зрения.
Взвешивание (будем изучать на следующем уроке в ходе лабораторной работы). Этот способ более удобный для нас и более привычный.
Вычисление по законам физики, используя формулы (такой способ применяют при вычислении масс планет, звезд и т. д.). Этот способ будем изучать в старших классах.

Контролирующий блок

  • 1. Что характеризует масса тела?
  • 2. Как можно определить сравнительную массу тела?
  • 3. Как можно определить точную массу тела, если известна масса тела, взаимодействующего с ним?

Домашнее задание

2. Тест
Как соотносятся массы тележек, если после пережигания нити, удерживающей легкую пружину, они начали двигаться со скоростями, указанными на рисунке?

а) масса первой тележки в 2 раза больше массы второй тележки
б) масса первой тележки в 2 раза меньше массы второй тележки
в) массы тележек одинаковы

... гравитационное притяжение Луны и Солнца приводит к образованию приливов на морях и океанах. Высота прилива в открытом океане около 1 м, а у берегов – до 18 метров (залив Фанди в Атлантическом океане).
... приливы и отливы бывают не только в океане, но и на суше. При этом происходят перемещения земной поверхности до 50 см.
... инертность железнодорожных составов столь велика, что время торможения поезда достигает 1–2 минут. За это время поезд, скрежеща тормозами, проедет около 1–2 км!

Список литературы

1. Урок на тему: «Инерция» Сарахман И.Д., учитель физики, МОУ СОШ №8, г Моздока, РСО-Алания.
2. Урок на тему: «Взаимодействие» Шустова Л.Ф., учитель физики, Пермский край, Ножовская средняя общеобразовательная школа.
3. Урок на тему: «Масса» Онькова О.В., учитель физики, Новосибирская обл., Мошковский р-н, РМОУ Сокурская СОШ.
4. Перышкин А.В. Физика. Учебник для общеобразовательных учебных заведений 7 класс. – М., ОАО «Московские учебники», 2008

Взаимодействие тел. 2. Виды взаимодейст­вия. 3. Сила. 4. Силы в механике.

Простые наблюдения и опыты, например с те­лежками (рис. 3), приводят к следующим качествен­ным заключениям: а) тело, на которое другие тела не действуют, сохраняет свою скорость неизменной;

б) ускорение тела возникает под действием других тел, но зависит и от самого тела; в) действия тел друг на друга всегда носят характер взаимодействия. Эти выводы подтверждаются при наблюдении явлений в природе, технике, космическом пространстве только в инерциальных системах отсчета.

Взаимодействия отличаются друг от друга и количественно, и качественно. Например, ясно, что чем больше деформируется пружина, тем больше взаимодействие ее витков. Или, чем ближе два одно­именных заряда, тем сильнее они будут притяги­ваться. В простейших случаях взаимодействия коли­чественной характеристикой является сила. Сила - причина ускорения тел по отношению к инерциальной системе отсчета или их деформации. Сила - это

векторная физическая величина, являющаяся мерой ускорения, приобретаемого телами при взаимо­действии. Сила характеризуется: а) модулем; б) точ­кой приложения; в) направлением.

Единица измерения силы - ньютон. 1 нью­тон - это сила, которая телу массой 1 кг сообщает ускорение 1 м/с в направлении действия этой силы, если другие тела на него не действуют. Равнодей­ствующей нескольких сил называют силу, действие которой эквивалентно действию тех сил, которые она заменяет. Равнодействующая является векторной суммой всех сил, приложенных к телу.

R=F1+F2+...+Fn,.

Качественно по своим свойствам взаимодей­ствия также различны. Например, электрическое и магнитное взаимодействия связаны с наличием заря­дов у частиц либо с движением заряженных частиц. Наиболее просто рассчитать силы в электродинами­ке: сила Ампера - F = IlBsina , сила Лоренца - F = qv Bsin a ., кулоновская сила - F = q 1 q 2 / r 2 ; и гравитационные силы: закон всемирного тяготе­ния-F = Gm 1 m 2 / r 2 . Такие механические силы, как

сила упругости и сила трения, возникают в резуль­тате электромагнитного взаимодействия. Для их рас­чета необходимо использовать формулы: .Fynp = -kx (закон Гука), Fтр = MN - сила трения.

На основании опытных данных были сформу­лированы законы Ньютона. Второй закон Ньютона. Ускорение, с которым движется тело, прямо про­порционально равнодействующей всех сил, дей­ствующих на тело, обратно пропорционально его массе и направлено так же, как и равнодействую­щая сила: а = F / m .

Для решения задач закон часто записывают в виде: F = та.

Третий закон является обобщением и звучит так: Тела действуют друг на друга с силами рвными по модулю и противоположными по направлению.

Первый закон: существуют такие системы отсчета, относительно которых поступательно движущиеся тело сохраняет свою скорость постоянной, если на него не действуют другие тела (или действие других тел компенсирутся).

Определение 1

Взаимодействие в физике - это воздействие частиц или тел друг на друга, приводящее к изменению состояния их движения.

Изменение состояния тел в пространстве

Несмотря на разнообразие воздействий тел друг на друга, в природе имеется лишь четыре типа фундаментальных воздействия:

  • гравитационные;
  • слабые взаимодействия;
  • сильные взаимодействия;
  • электромагнитные взаимодействия.

Любые изменения в природе происходят в результате взаимодействия между телами. Чтобы изменить положение вагона на рельсах, железнодорожники направляют к нему локомотив, который смещает вагон с места и приводит его в состояние движения. Парусник может длительное время стоять у берега, пока не подует попутный ветер, который подействует на его паруса. Колеса игрушечной машины могут вращаться с любой скоростью, но игрушка не изменит своего положения, если под нее не подложить дощечку или линейку. Форму или размер пружины можно изменить, лишь подвесив к ней грузило или потянув рукой за один из ее концов.

Все тела в природе действуют один на другого или непосредственно через физические поля. Если тепловоз действует на вагон и меняет его скорость, то скорость тепловоза при этом также меняется в результате обратного действия вагона. Солнце действует на Землю и тела, удерживая ее на орбите. Но и Земля притягивает Солнце, и в свою очередь меняет его траекторию. Итак, во всех случаях можно говорить лишь о взаимном действие тел - взаимодействие.

При взаимодействии меняются скорости тел или их частей. С другой стороны, взаимодействуя с разными телами, оно по-разному будет изменять свою скорость. Так, парусник может приобрести скорости из-за действия на него ветра. Но такого же результата можно достигнуть, включив двигатель, размещенный на паруснике. Его может сдвинуть с места и катер, действующий на парусник через трос. Чтобы не называть каждый раз все взаимодействующие тела, или тела, которые действуют на данное него, все эти действия объединяют одним понятие силы.

Что такое сила?

Сила, воспринимая его как физическое понятие может быть большей или меньшей, а также учитывая вызванные ею изменения в состоянии тела или его частей.

Определение 2

Сила – это физическая величина, которая характеризуется как действие одного тела на другое.

Действие тепловоза на вагон будет значительно интенсивней, чем действие нескольких грузчиков. Под действием тепловоза вагон быстрее сдвинется с места и начнет двигаться с большей скоростью, чем тогда, когда вагон будут толкать грузчики, которые чуть сместят вагон или вовсе не сдвинут с места.

Для того чтобы производить математические расчеты, силу обозначают латинской буквой $F$.

Как и все остальные физические величины, сила имеет определенные единицы. В наши дни наука пользуется единицей, которая называется ньютоном ($H$). Она получила такое название в честь ученого Исаака Ньютона, который внес значительный вклад в развитие физической и математической науки.

И. Ньютон - выдающийся английский ученый, основатель классической физики. Его научные работы касаются механики, оптики, астрономии и математики. Он сформулировал законы классической механики, открыл дисперсии света, разработал дифференциальный и интегральное исчисления и т.д.

Измерение силы

Для измерения силы применяют специальные приборы, которые называются динамометрами. Стоит отметить, что указать числовое значение силы не всегда достаточно для определения данных ее действия. Нужно знать точку ее приложения и направление действия.

Если высокий брусок, что стоит на столе, толкать в нижней части, то он будет скользить на поверхности стола. Если же к нему прилагать силу в верхней его части, то он просто опрокинется.

Понятно, что направление падения бруска зависит от того, в каком направлении будем его толкать. Итак, сила это также направление. От направления силы зависит изменение скорости тела, на которые эта сила действует.

Пользуясь графическом методом, можно проводить различные математические операции с силами. Так, если в одной точке на теле прилагаемые силы $2H$ и $CH$ действуют в одном направлении, то их действие можно заменить одной силой, которая работает в том же направлении, а ее значение равняется сумме значений каждой из сил. Вектор этой силы имеет длину, которая равняется сумме длин обоих векторов.

Равнодействующая сила - это сила, действие которой одинаково действует на нескольких сил, приложенных к телу в определенной точке.

Возможен иной случай, когда силы прилагаемые в одной точке тела, действуют в противоположных напрямую. В таком случае их можно заменить одной силой, движущейся в направлении большей силы, а ее значение равняется разности значений каждой силы. Длина вектора этой силы равняется разницей длины векторов прилагаемых сил.

Инерция - это явление сохранения телами постоянной скорости, когда на них не действуют другие тела. Состоит данное явление в том, что для изменения скорости тела требуется определенное время. Инерцию нельзя измерить, ее можно только наблюдать, или воспроизвести.

Заметим, что в земных условиях нельзя создать обстоятельства, при которых на тело не действуют силы, ведь всегда существует земное притяжение, сила сопротивления двигательные и тому подобное. Явление инерции открыл известный ученый Галилео Галилей.Стоит отметить, что для прямого измерения массы применяют различные весы. Среди них самые распространенные и самые простые - рычажные. На этих весах сравнивают взаимодействие с Землей тела и эталонных гирь, возложенных на чашу весов. На практике применяют и другие весы, которые приспособлены к различным условиям работы и имеют разные конструкции. В данном случае, точность измерения массы имеет большое значение.



Что еще почитать