Линейные пространства. Подпространства. Размерность и базис. Размерность и базис векторного пространства, разложение вектора по базису, примеры Системы линейных однородных уравнений

1. Пусть подпространство L = L (а 1 , а 2 , …, а m ) , то есть L – линейная оболочка системы а 1 , а 2 , …, а m ; векторы а 1 , а 2 , …, а m – система образующих этого подпространства. Тогда базисом L является базис системы векторов а 1 , а 2 , …, а m , то есть базис системы образующих. Размерность L равна рангу системы образующих.

2. Пусть подпространство L является суммой подпространств L 1 и L 2 . Систему образующих суммы подпространств можно получить объединением систем образующих подпространств, после чего находится базис суммы. Размерность суммы находится по следующей формуле:

dim (L 1 + L 2) = dimL 1 + dimL 2 – dim (L 1 Ç L 2).

3. Пусть сумма подпространств L 1 и L 2 прямая, то есть L = L 1 Å L 2 . При этом L 1 Ç L 2 = {о } и dim (L 1 Ç L 2) = 0. Базис прямой суммы равен объединению базисов слагаемых. Размерность прямой суммы равна сумме размерностей слагаемых.

4. Приведем важный пример подпространства и линейного многообразия.

Рассмотрим однородную систему m линейных уравнений с n неизвестными. Множество решений М 0 этой системы является подмножеством множества R n и замкнуто относительно сложения векторов и умножения их на действительное число. Это означает, что это множество М 0 – подпространство пространства R n . Базисом подпространства является фундаментальный набор решений однородной системы, размерность подпространства равна количеству векторов в фундаментальном наборе решений системы.

Множество М решений общей системы m линейных уравнений с n неизвестными так же является подмножеством множества R n и равно сумме множества М 0 и вектора а , где а – некоторое частное решение исходной системы, а множество М 0 – множество решений однородной системы линейных уравнений, сопутствующей данной системе (она отличается от исходной только свободными членами),

М = а + М 0 = {а = m , m Î М 0 }.

Это означает, что множество М является линейным многообразием пространства R n с вектором сдвига а и направлением М 0 .

Пример 8.6. Найти базис и размерность подпространства, заданного однородной системой линейных уравнений:

Решение . Найдем общее решение этой системы и ее фундаментальный набор решений: с 1 = (–21, 12, 1, 0, 0), с 2 = (12, –8, 0, 1, 0), с 3 = (11, –8, 0, 0, 1).

Базис подпространства образуют векторы с 1 , с 2 , с 3 , его размерность равна трем.

Конец работы -

Эта тема принадлежит разделу:

Линейная алгебра

Костромской государственный университет имени н а некрасова..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

ББК 22.174я73-5
М350 Печатается по решению редакционно-издательского совета КГУ им. Н. А. Некрасова Рецензент А. В. Чередников

ББК 22.174я73-5
ã Т. Н. Матыцина, Е. К. Коржевина 2013 ã КГУ им. Н. А. Некрасова, 2013

Объединение (или сумма)
Определение 1.9.Объединением множеств А и В называется множество A È B, состоящее из тех и только тех элементов, которые принадлежат хотя

Пересечение (или произведение)
Определение 1.10. Пересечением множеств А и В называется множество A Ç B, которое состоит из тех и только тех элементов, принадлежащих одн

Разность
Определение 1.11.Разностью множеств А и В называется множество А В, состоящее из тех и только тех элементов, которые принадлежат множеству А

Декартовое произведение (или прямое произведение)
Определение 1.14. Упорядоченной парой (или парой) (a, b) называется два элемента a, b взятые в определенном порядке. Пары (a1

Свойства операций над множествами
Свойства операций объединения, пересечения и дополнения иногда называют законами алгебры множеств. Перечислим основные свойства операций над множествами. Пусть задано универсальное множество U

Метод математической индукции
Метод математической индукции используется для доказательства утверждений, в формулировке которых участвует натуральный параметр n. Метод математической индукции – метод доказательства матем

Комплексные числа
Понятие числа является одним из основных завоеваний человеческой культуры. Сначала появились натуральные числа N = {1, 2, 3, …, n, …} затем целые Z = {…, –2, –1, 0, 1, 2, …}, рациональные Q

Геометрическая интерпретация комплексных чисел
Известно, что отрицательные числа были введены в связи с решением линейных уравнений с одной переменной. В конкретных задачах отрицательный ответ истолковывался как значение направленной величины (

Тригонометрическая форма комплексного числа
Вектор можно задать не только координатами в прямоугольной системе координат, но и длиной и

Действия над комплексными числами в тригонометрической форме
Сложение и вычитание удобнее производить над комплексными числами в алгебраической форме, а умножение и деление – в тригонометрической форме. 1. Умножений.Пусть даны два к

Возведение в степень
Если z = r(cosj + i×sinj), то zn = rn(cos(nj) + i×sin(nj)), где n Î

Показательная форма комплексного числа
Из математического анализа известно, что e = , e – иррациональное число. Эйле

Понятие отношения
Определение 2.1. n-арным (или n-местным) отношениемP на множествах A1, A2, …, An называется любое подмнож

Свойства бинарных отношений
Пусть бинарное отношение Р задано на непустом множестве А, т. е. Р Í А2. Определение 2.9.Бинарное отношение P на множе

Отношение эквивалентности
Определение 2.15. Бинарное отношение на множестве А называется отношением эквивалентности, если оно рефлексивно, симметрично и транзитивно. Отношение эквивал

Функции
Определение 2.20.Бинарное отношение ƒ Í A ´ B называется функцией из множества A в множество B, если для любого x

Общие понятия
Определение 3.1. Матрицей называется прямоугольная таблица из чисел, содержащая m строк и n столбцов. Числа m и n называют порядком (или

Сложение однотипных матриц
Складывать можно только однотипные матрицы. Определение 3.12. Суммой двух матриц А = (aij) и B = (bij), где i = 1,

Свойства сложения матриц
1) коммутативность: " А, В: А + В = В + А; 2) ассоциативность: " А, В, С: (А + В) + С = А

Умножение матрицы на число
Определение 3.13. Произведением матрицы А = (aij) на действительной число k называется матрица С = (сij), для которой с

Свойства умножения матрицы на число
1) " А: 1×А = А; 2) " α, β Î R, " А: (αβ)×А = α×(β×А) = β×

Умножение матриц
Определим умножение двух матриц; для этого необходимо ввести некоторые дополнительные понятия. Определение 3.14. Матрицы А и В называются согласованными

Свойства умножения матриц
1) Умножение матриц не коммутативно: A×B ≠ B×A. Продемонстрировать данное свойство можно на примерах. Пример 3.6. а)

Транспонирование матриц
Определение 3.16. Матрица Аt, полученная из данной заменой каждой ее строки столбцом с тем же номером, называется транспонированной к данной матрице А

Определители матриц второго и третьего порядка
Каждой квадратной матрице А порядка n ставится в соответствие число, которое называется определителем этой матрицы. Обозначение: D, |A|, det A,

Определение 4.6.
1. При n = 1 матрица А состоит из одного числа: |A| = а11. 2. Пусть для матрицы порядка (n – 1) определитель известен. 3. Определи

Свойства определителей
Для того чтобы вычислять определители порядков, больших, чем 3, используют свойства определителей и теорему Лапласа. Теорема 4.1 (Лапласа). Определитель квадратной матрицы

Практическое вычисление определителей
Один из способов вычисления определителей порядка выше трех – разложение его по какому-либо столбцу или строке. Пример 4.4.Вычислить определитель D =

Понятие ранга матрицы
Пусть А – матрица размерности m ´ n. Выберем в этой матрице произвольно k строк и k столбцов, где 1 ≤ k ≤ min(m, n).

Нахождение ранга матрицы методом окаймления миноров
Один из методов методом нахождения ранга матрицы является метод перебора миноров. Этот способ основан на определении ранга матрицы. Суть метода в следующем. Если есть хотя бы один элемент ма

Нахождение ранга матрицы с помощью элементарных преобразований
Рассмотрим еще один способ нахождения ранга матрицы. Определение 5.4. Элементарными преобразованиями матрицы называются следующие преобразования: 1. умноже

Понятие обратной матрицы и способы ее нахождения
Пусть дана квадратная матрица А. Определение 5.7. Матрица А–1 называется обратной для матрицы А, если А×А–1

Алгоритм нахождения обратной матрицы
Рассмотрим один из способов нахождения обратной матрицы к данной с помощью алгебраических дополнений. Пусть дана квадратная матрица А. 1. Находим определитель матрицы |A|. Ес

Нахождение обратной матрицы с помощью элементарных преобразований
Рассмотрим еще способ нахождения обратной матицы с помощью элементарных преобразований. Сформулируем необходимые понятия и теоремы. Определение 5.11.Матрица В назыв

Метод Крамера
Рассмотрим систему линейных уравнений, в которой число уравнений равно числу неизвестных, то есть m = n и система имеет вид:

Метод обратной матрицы
Метод обратной матрицы применим для систем линейных уравнений, в которых число уравнений равно числу неизвестных и определитель основной матрицы не равен нулю. Матричная форма записи систе

Метод Гаусса
Для описания этого метода, который годится для решения произвольных систем линейных уравнений, необходимы некоторые новые понятия. Определение 6.7. Уравнение вида 0×

Описание метода Гаусса
Метод Гаусса – метод последовательного исключения неизвестных – заключается в том, что с помощью элементарных преобразований исходная система приводится к равносильной ей системе ступенчатого или т

Исследование системы линейных уравнений
Исследовать систему линейных уравнений – это значит, не решая систему, ответить на вопрос: совместна система или нет, а если совместна, то, сколько у нее решений. Ответить на этот в

Однородные системы линейных уравнений
Определение 6.11.Система линейных уравнений называется однородной, если ее свободные члены равны нулю. Однородная система m линейных уравнени

Свойства решений однородной системы линейных уравнений
1. Если вектор а = (a1, a2, …, an) является решением однородной системы, то вектор k×а = (k×a1, k&t

Фундаментальный набор решений однородной системы линейных уравнений
Пусть М0 – множество решений однородной системы (4) линейных уравнений. Определение 6.12.Векторы с1, с2, …, с

Линейная зависимость и независимость системы векторов
Пусть а1, а2, …, аm множество из m штук n-мерных векторов, о котором принято говорить – система векторов, и k1

Свойства линейной зависимости системы векторов
1) Система векторов, содержащая нулевой вектор, линейно зависима. 2) Система векторов линейно зависима, если какая-нибудь ее подсистема линейно зависима. Следствие. Если си

Единичная система векторов
Определение 7.13. Системой единичных векторов пространства Rn называется система векторов e1, e2, …, en

Две теоремы о линейной зависимости
Теорема 7.1. Если большая система векторов линейно выражается через меньшую, то большая система линейно зависима. Сформулируем эту теорему подробнее: пусть а1

Базис и ранг системы векторов
Пусть S – система векторов пространства Rn; она может быть как конечной, так и бесконечной. S" – подсистема системы S, S" Ì S. Дадим два

Ранг системы векторов
Дадим два равносильных определения ранга системы векторов. Определение 7.16. Рангом системы векторов называется количество векторов в любом базисе этой системы.

Практическое нахождение ранга и базиса системы векторов
Из данной системы векторов составляем матрицу, расположив векторы как строки этой матрицы. Приводим матрицу к ступенчатому виду с помощью элементарных преобразований над строками этой матрицы. При

Определение векторного пространства над произвольным полем
Пусть P – произвольное поле. Известные нам примеры полей – поле рациональных, действительных, комплексных чисел. Определение 8.1. Множество V называется в

Простейшие свойства векторных пространств
1) о – нулевой вектор (элемент), определен единственным образом в произвольном векторном пространстве над полем. 2) Для любого вектора a Î V существует единствен

Подпространства. Линейные многообразия
Пусть V – векторное пространство, L Ì V (L подмножество V). Определение 8.2. Подмножество L векторного про

Пересечение и сумма подпространств
Пусть V – векторное пространство над полем P, L1 и L2 – его подпространства. Определение 8.3. Пересечением подпрос

Линейные многообразия
Пусть V – векторное пространство, L – подпространство, a – произвольный вектор из пространства V. Определение 8.6.Линейным многообразием

Конечномерные векторные пространства
Определение 8.7.Векторное пространство V называется n-мерным, если в нем существует линейно независимая система векторов, состоящая из n векторов, и при

Базис конечномерного векторного пространства
V – конечномерное векторное пространство над полем P, S – система векторов (конечная или бесконечная). Определение 8.10. Базисом системы S

Координаты вектора относительно данного базиса
Рассмотрим конечномерное векторное пространство V размерности n, векторы e1, e2, …, en образуют его базис. Пусть a – произ

Координаты вектора в различных базисах
Пусть V – n-мерное векторное пространство, в котором заданы два базиса: e1, e2, …, en – старый базис, e"1, e

Евклидовы векторные пространства
Дано векторное пространство V над полем действительных чисел. Это пространство может быть как конечномерным векторным пространством размерности n, так и бесконечномерн

Скалярное произведение в координатах
В евклидовом векторном пространстве V размерности n задан базис e1, e2, …, en. Векторы x и y разложены по векторам

Метрические понятия
В евклидовых векторных пространствах от введенного скалярного произведения можно перейти к понятиям нормы вектора и угла между векторами. Определение 8.16. Нормой (

Свойства нормы
1) ||a|| = 0 Û a = о. 2) ||la|| = |l|×||a||, т. к. ||la|| =

Ортонормированный базис евклидова векторного пространства
Определение 8.21. Базис евклидова векторного пространства называется ортогональным, если векторы базиса попарно ортогональны, то есть если а1, а

Процесс ортогонализации
Теорема 8.12. Во всяком n-мерном евклидовом пространстве существует ортонормированный базис. Доказательство. Пусть а1, а2

Скалярное произведение в ортонормированном базисе
Дан ортонормированный базис e1, e2, …, en евклидова пространства V. Поскольку (ei, ej) = 0 при i

Ортогональное дополнение подпространства
V – евклидово векторное пространство, L – его подпространство. Определение 8.23. Говорят, что вектор а ортогонален подпространству L , если вектор

Связь между координатами вектора и координатами его образа
В пространстве V задан линейный оператор j, а также в некотором базисе e1, e2, …, en найдена его матрица M(j). Пусть в этом базис

Подобные матрицы
Рассмотрим множество Рn´n квадратных матриц порядка n с элементами из произвольного поля P. Введем на этом множестве отно

Свойства отношения подобия матриц
1. Рефлексивность. Любая матрица подобна сама себе, т. е. А ~ А. 2. Симметричность. Если матрица A подобна B, то и B подобна A, т. е

Свойства собственных векторов
1. Каждый собственный вектор принадлежит только одному собственному значению. Доказательство. Пусть x собственный вектор с двумя собственными значениями

Характеристический многочлен матрицы
Дана матрица A Î Рn´n (или A Î Rn´n). Определени

Условия, при которых матрица подобна диагональной матрице
Пусть A – квадратная матрица. Можно считать, что это матрица некоторого линейного оператора, заданного в каком-то базисе. Известно, что в другом базисе матрица линейного операт

Жорданова нормальная форма
Определение 10.5. Жордановой клеткой порядка k, относящейся к числу l0, называется матрица порядка k, 1 ≤ k ≤ n,

Приведение матрицы к жордановой (нормальной) форме
Теорема 10.3. Жорданова нормальная форма определяется для матрицы однозначно с точностью до порядка расположения жордановых клеток на главной диагонали. Пр

Билинейные формы
Определение 11.1. Билинейной формой называется функция (отображение) f: V ´ V ® R (или C), где V – произвольное векторное п

Свойства билинейных форм
Любую билинейную форму можно представить в виде суммы симметричной кососимметричной форм. При выбранном базисе e1, e2, …, en в векторн

Преобразование матрицы билинейной формы при переходе к новому базису. Ранг билинейной формы
Пусть в векторном пространстве V заданы два базиса e = {e1, e2, …, en} и f = {f1, f2,

Квадратичные формы
Пусть A(x, y) – симметрическая билинейная форма, заданная на векторном пространстве V. Определение 11.6.Квадратичной формой

Приведение квадратичной формы к каноническому виду
Дана квадратичная форма (2) A(x, x) = , где x = (x1

Закон инерции квадратичных форм
Установлено, что число отличных от нуля канонических коэффициентов квадратичной формы равно ее рангу и не зависит от выбора невырожденного преобразования, с помощью которого форма A(x

Необходимое и достаточное условие знакоопределенности квадратичной формы
Утверждение 11.1. Для того чтобы квадратичная форма A(x, x), заданная в n-мерном векторном пространстве V, была знакоопределенной, необход

Необходимое и достаточное условие квазизнакопеременности квадратичной формы
Утверждение 11.3. Для того чтобы квадратичная форма A(x, x), заданная в n-мерном векторном пространстве V, была квазизнакопеременной (то е

Критерий Сильвестра знакоопределенности квадратичной формы
Пусть форма A(x, x) в базисе e = {e1, e2, …, en} определяется матрицей A(e) = (aij)

Заключение
Линейная алгебра является обязательной частью любой программы по высшей математике. Любой другой раздел предполагает наличие знаний, умений и навыков, заложенных во время преподавания этой дисципли

Библиографический список
Бурмистрова Е.Б., Лобанов С.Г. Линейная алгебра с элементами аналитической геометрии. – М.: Изд-во ВШЭ, 2007. Беклемишев Д.В. Курс аналитической геометрии и линейной алгебры.

Линейная алгебра
Учебно-методическое пособие Редактор и корректор Г. Д. Неганова Компьютерный набор Т. Н. Матыциной, Е. К. Коржевина


Когда мы разбирали понятия n -мерного вектора и вводили операции над векторами, то выяснили, что множество всех n -мерных векторов порождает линейное пространство. В этой статье мы поговорим о важнейших связанных понятиях – о размерности и базисе векторного пространства. Также рассмотрим теорему о разложении произвольного вектора по базису и связь между различными базисами n -мерного пространства. Подробно разберем решения характерных примеров.

Навигация по странице.

Понятие размерности векторного пространства и базиса.

Понятия размерности и базиса векторного пространства напрямую связаны с понятием линейно независимой системы векторов, так что рекомендуем при необходимости обращаться к статье линейная зависимость системы векторов, свойства линейной зависимости и независимости.

Определение.

Размерностью векторного пространства называется число, равное максимальному количеству линейно независимых векторов в этом пространстве.

Определение.

Базис векторного пространства – это упорядоченная совокупность линейно независимых векторов этого пространства, число которых равно размерности пространства.

Приведем некоторые рассуждения, основываясь на этих определениях.

Рассмотрим пространство n -мерных векторов.

Покажем, что размерность этого пространства равна n .

Возьмем систему из n единичных векторов вида

Примем эти векторы в качестве строк матрицы А . В этом случае матрица А будет единичной матрицей размерности n на n . Ранг этой матрицы равен n (при необходимости смотрите статью ). Следовательно, система векторов линейно независима, причем к этой системе нельзя добавить ни одного вектора, не нарушив ее линейной независимости. Так как число векторов в системе равно n , то размерность пространства n -мерных векторов равна n , а единичные векторы являются базисом этого пространства .

Из последнего утверждения и определения базиса можно сделать вывод, что любая система n -мерных векторов, число векторов в которой меньше n , не является базисом .

Теперь переставим местами первый и второй вектор системы . Легко показать, что полученная система векторов также является базисом n -мерного векторного пространства. Составим матрицу, приняв ее строками векторы этой системы. Эта матрица может быть получена из единичной матрицы перестановкой местами первой и второй строк, следовательно, ее ранг будет равен n . Таким образом, система из n векторов линейно независима и является базисом n -мерного векторного пространства.

Если переставить местами другие векторы системы , то получим еще один базис.

Если взять линейно независимую систему не единичных векторов, то она также является базисом n -мерного векторного пространства.

Таким образом, векторное пространство размерности n имеет столько базисов, сколько существует линейно независимых систем из n n -мерных векторов.

Если говорить о двумерном векторном пространстве (то есть, о плоскости), то ее базисом являются два любых не коллинеарных вектора. Базисом трехмерного пространства являются три любых некомпланарных вектора.

Рассмотрим несколько примеров.

Пример.

Являются ли векторы базисом трехмерного векторного пространства?

Решение.

Исследуем эту систему векторов на линейную зависимость. Для этого составим матрицу, строками которой будут координаты векторов, и найдем ее ранг:


Таким образом, векторы a , b и c линейно независимы и их количество равно размерности векторного пространства, следовательно, они являются базисом этого пространства.

Ответ:

Да, являются.

Пример.

Может ли система векторов быть базисом векторного пространства?

Решение.

Эта система векторов линейно зависима, так как максимальное число линейно независимых трехмерных векторов равно трем. Следовательно, эта система векторов не может быть базисом трехмерного векторного пространства (хотя подсистема исходной системы векторов является базисом).

Ответ:

Нет, не может.

Пример.

Убедитесь, что векторы

могут быть базисом четырехмерного векторного пространства.

Решение.

Составим матрицу, приняв ее строками исходные векторы:

Найдем :

Таким образом, система векторов a, b, c, d линейно независима и их количество равно размерности векторного пространства, следовательно, a, b, c, d являются его базисом.

Ответ:

Исходные векторы действительно являются базисом четырехмерного пространства.

Пример.

Составляют ли векторы базис векторного пространства размерности 4 ?

Решение.

Даже если исходная система векторов линейно независима, количество векторов в ней недостаточно для того, чтобы быть базисом четырехмерного пространства (базис такого пространства состоит из 4 векторов).

Ответ:

Нет, не составляет.

Разложение вектора по базису векторного пространства.

Пусть произвольные векторы являются базисом n -мерного векторного пространства. Если к ним добавить некоторый n -мерный вектор x , то полученная система векторов будет линейно зависимой. Из свойств линейной зависимости мы знаем, что хотя бы один вектор линейно зависимой системы линейно выражается через остальные. Иными словами, хотя бы один из векторов линейно зависимой системы раскладывается по остальным векторам.

Так мы подошли к очень важной теореме.

Теорема.

Любой вектор n -мерного векторного пространства единственным образом раскладывается по базису.

Доказательство.

Пусть - базис n -мерного векторного пространства. Добавим к этим векторам n -мерный вектор x . Тогда полученная система векторов будет линейно зависимой и вектор x может быть линейно выражен через векторы : , где - некоторые числа. Так мы получили разложение вектора x по базису. Осталось доказать, что это разложение единственно.

Предположим, что существует еще одно разложение , где - некоторые числа. Отнимем от левой и правой частей последнего равенства соответственно левую и правую части равенства :

Так как система базисных векторов линейно независима, то по определению линейной независимости системы векторов полученное равенство возможно только тогда, когда все коэффициенты равны нулю. Поэтому, , что доказывает единственность разложения вектора по базису.

Определение.

Коэффициенты называются координатами вектора x в базисе .

После знакомства с теоремой о разложении вектора по базису, мы начинаем понимать суть выражения «нам задан n -мерный вектор ». Это выражение означает, что мы рассматриваем вектор x n -мерного векторного пространства, координаты которого заданы в некотором базисе. При этом мы понимаем, что этот же вектор x в другом базисе n-мерного векторного пространства будет иметь координаты, отличные от .

Рассмотрим следующую задачу.

Пусть в некотором базисе n -мерного векторного пространства нам задана система из n линейно независимых векторов

и вектор . Тогда векторы также являются базисом этого векторного пространства.

Пусть нам требуется найти координаты вектора x в базисе . Обозначим эти координаты как .

Вектор x в базисе имеет представление . Запишем это равенство в координатной форме:

Это равенство равносильно системе из n линейных алгебраических уравнений с n неизвестными переменными :

Основная матрица этой системы имеет вид

Обозначим ее буквой А . Столбцы матрицы А представляют собой векторы линейно независимой системы векторов , поэтому ранг этой матрицы равен n , следовательно, ее определитель отличен от нуля. Этот факт указывает на то, что система уравнений имеет единственное решение, которое может быть найдено любым методом, например, или .

Так будут найдены искомые координаты вектора x в базисе .

Разберем теорию на примерах.

Пример.

В некотором базисе трехмерного векторного пространства заданы векторы

Убедитесь, что система векторов также является базисом этого пространства и найдите координаты вектора x в этом базисе.

Решение.

Чтобы система векторов была базисом трехмерного векторного пространства нужно, чтобы она была линейно независима. Выясним это, определив ранг матрицы A , строками которой являются векторы . Ранг найдем методом Гаусса


следовательно, Rank(A) = 3 , что показывает линейную независимость системы векторов .

Итак, векторы являются базисом. Пусть в этом базисе вектор x имеет координаты . Тогда, как мы показали выше, связь координат этого вектора задается системой уравнений

Подставив в нее известные из условия значения, получим

Решим ее методом Крамера:

Таким образом, вектор x в базисе имеет координаты .

Ответ:

Пример.

В некотором базисе четырехмерного векторного пространства задана линейно независимая система векторов

Известно, что . Найдите координаты вектора x в базисе .

Решение.

Так как система векторов линейно независима по условию, то она является базисом четырехмерного пространства. Тогда равенство означает, что вектор x в базисе имеет координаты . Обозначим координаты вектора x в базисе как .

Система уравнений, задающая связь координат вектора x в базисах и имеет вид

Подставляем в нее известные значения и находим искомые координаты :

Ответ:

.

Связь между базисами.

Пусть в некотором базисе n -мерного векторного пространства заданы две линейно независимые системы векторов

и

то есть, они тоже являются базисами этого пространства.

Если - координаты вектора в базисе , то связь координат и задается системой линейных уравнений (об этом мы говорили в предыдущем пункте):

, которая в матричной форме может быть записана как

Аналогично для вектора мы можем записать

Предыдущие матричные равенства можно объединить в одно, которое по сути задает связь векторов двух различных базисов

Аналогично мы можем выразить все векторы базиса через базис :

Определение.

Матрицу называют матрицей перехода от базиса к базису , тогда справедливо равенство

Умножив обе части этого равенства справа на

получим

Найдем матрицу перехода, при этом не будем подробно останавливаться на нахождении обратной матрицы и умножении матриц (смотрите при необходимости статьи и ):

Осталось выяснить связь координат вектора x в заданных базисах.

Пусть в базисе вектор x имеет координаты , тогда

а в базисе вектор x имеет координаты , тогда

Так как левые части последних двух равенств одинаковы, то мы можем приравнять правые части:

Если умножить обе части справа на

то получим


С другой стороны

(найдите обратную матрицу самостоятельно).
Два последних равенства дают нам искомую связь координат вектора x в базисах и .

Ответ:

Матрица перехода от базиса к базису имеет вид
;
координаты вектора x в базисах и связаны соотношениями

или
.

Мы рассмотрели понятия размерности и базиса векторного пространства, научились раскладывать вектор по базису и обнаружили связь между разными базисами n-мерного пространства векторов через матрицу перехода.

Системы линейных однородных уравнений

Постановка задачи. Найти какой-нибудь базис и определить размерность линейного пространства решений системы

План решения.

1. Записываем матрицу системы:

и с помощью элементарных преобразований преобразуем матрицу к треугольному виду, т.е. к такому виду, когда все элементы, находящиеся ниже главной диагонали равны нулю. Ранг матрицы системы равен числу линейно независимых строк, т.е., в нашем случае, числу строк, в которых остались ненулевые элементы:

Размерность пространства решений равна . Если , то однородная система имеет единственное нулевое решение, если , то система имеет бесчисленное множество решений.

2. Выбираем базисных и свободных переменных. Свободные переменные обозначаем . Затем базисные переменные выражаем через свободные, получив таким образом общее решение однородной системы линейных уравнений.

3. Записываем базис пространства решений системы полагая последовательно одну из свободных переменных равной единице, а остальные нулю. Размерность линейного пространства решений системы равна количеству векторов базиса.

Примечание. К элементарным преобразованиям матрицы относят:

1. умножение (деление) строки на множитель, отличный от нуля;

2. прибавление к какой-либо строке другой строки, умноженной на любое число;

3. перестановка строк местами;

4. преобразования 1–3 для столбцов (в случае решения систем линейных уравнений элементарные преобразования столбцов не используются).

Задача 3. Найти какой-нибудь базис и определить размерность линейного пространства решений системы.

Выписываем матрицу системы и с помощью элементарных преобразований приводим ее к треугольному виду:

Полагаем , тогда

Подмножество линейного пространства образует подпространство, если оно замкнуто относительно сложения векторов и умножения на скаляры.

П р и м е р 6.1. Образует ли подпространство в плоскости множество векторов, концы которых лежат: а) в первой четверти; б) на прямой, проходящей через начало координат? (начала векторов лежат в начале координат)

Р е ш е н и е.

а) нет, так как множество не замкнуто относительно умножения на скаляр: при умножении на отрицательное число конец вектора попадает в третью четверть.

б) да, так как при сложении векторов и умножении их на любое число их концы остаются на той же прямой.

У п р а ж н е н и е 6.1. Образуют ли подпространство следующие подмножества соответствующих линейных пространств:

а) множество векторов плоскости, концы которых лежат в первой или третьей четверти;

б) множество векторов плоскости, концы которых лежат на прямой, не проходящей через начало координат;

в) множество координатных строк {(x 1 , x 2 , x 3)ï x 1 + x 2 + x 3 = 0};

г) множество координатных строк {(x 1 , x 2 , x 3)ï x 1 + x 2 + x 3 = 1};

д) множество координатных строк {(x 1 , x 2 , x 3)ï x 1 = x 2 2 }.

Размерностью линейного пространства L называется число dim L векторов, входящих в любой его базис.

Размерность суммы и пересечения подпространств связаны соотношением

dim (U + V) = dim U + dim V – dim (U Ç V).

П р и м е р 6.2. Найти базис и размерность суммы и пересечения подпространств, натянутых на следующие системы векторов:

Р е ш е н и е. Каждая из систем векторов, порождающих подпространства U и V, линейно независима, значит, является базисом соответствующего подпространства. Построим матрицу из координат данных векторов, расположив их по столбцам и отделив чертой одну систему от другой. Приведем получившуюся матрицу к ступенчатому виду.

~ ~ ~ .

Базис U + V образуют векторы , , , которым в ступенчатой матрице соответствуют ведущие элементы. Следовательно, dim (U + V) = 3. Тогда

dim (UÇV) = dim U + dim V – dim (U + V) = 2 + 2 – 3 = 1.

Пересечение подпространств образует множество векторов, удовлетворяющих уравнению (стоящих в левой и правой частях этого уравнения). Базис пересечения получим с помощью фундаментальной системы решений системы линейных уравнений, соответствующей этому векторному уравнению. Матрица этой системы уже приведена к ступенчатому виду. Исходя из него, заключаем, что y 2 – свободная переменная, и полагаем y 2 = c. Тогда 0 = y 1 – y 2 , y 1 = c,. и пересечение подпространств образует множество векторов вида = с (3, 6, 3, 4). Следовательно, базис UÇV образует вектор (3, 6, 3, 4).



З а м е ч а н и я. 1. Если продолжить решать систему, находя значения переменных х, то получим x 2 = c, x 1 = c, и в левой части векторного уравнения получится вектор , равный полученному выше.

2. Указанным методом можно получить базис суммы независимо от того, являются ли порождающие системы векторов линейно независимыми. Но базис пересечения будет получен правильно, только если хотя бы система, порождающая второе подпространство, линейно независима.

3. Если будет установлено, что размерность пересечения равна 0, то пересечение не имеет базиса, и искать его не нужно.

У п р а ж н е н и е 6.2. Найти базис и размерность суммы и пересечения подпространств, натянутых на следующие системы векторов:

а)

б)

Евклидово пространство

Евклидовым пространством называется линейное пространство над полем R , в котором определено скалярное умножение, ставящее в соответствие каждой паре векторов , скаляр , причем выполнены условия:

2) (a + b ) = a() + b();

3) ¹ Þ > 0.

Стандартное скалярное произведение вычисляется по формулам

(a 1 , … , a n) (b 1 , … , b n) = a 1 b 1 + … + a n b n .

Векторы и называются ортогональными, записывается ^ , если их скалярное произведение равно 0.

Система векторов называется ортогональной, если векторы в ней попарно ортогональны.

Ортогональная система векторов линейно независима.

Процесс ортогонализации системы векторов , … , заключается в переходе к эквивалентной ортогональной системе , … , , выполняемом по формулам:

, где , k = 2, … , n.

П р и м е р 7.1. Ортогонализировать систему векторов

= (1, 2, 2, 1), = (3, 2, 1, 1), = (4, 1, 3, -2).

Р е ш е н и е. Имеем = = (1, 2, 2, 1);

, = = = 1;

= (3, 2, 1, 1) – (1, 2, 2, 1) = (2, 0, -1, 0).

, = = =1;

= =1;

= (4, 1, 3, -2) – (1, 2, 2, 1) – (2, 0, -1, 0) = (1, -1, 2, -3).

У п р а ж н е н и е 7.1. Ортогонализировать системы векторов:

а) = (1, 1, 0, 2), = (3, 1, 1, 1), = (-1, -3, 1, -1);

б) = (1, 2, 1, 1), = (3, 4, 1, 1), = (0, 3, 2, -1).

П р и м е р 7.2. Дополнить систему векторов = (1, -1, 1, -1),



= (1, 1, -1, -1), до ортогонального базиса пространства.

Р е ш е н и е. Исходная система ортогональна, поэтому задача имеет смысл. Так как векторы заданы в четырехмерном пространстве, то требуется найти еще два вектора. Третий вектор = (x 1 , x 2 , x 3 , x 4) определяем из условий = 0, = 0. Эти условия дают систему уравнений, матрица которой образована из координатных строк векторов и . Решаем систему:

~ ~ .

Свободным переменным x 3 и x 4 можно придать любой набор значений, отличный от нулевого. Полагаем, например, x 3 = 0, x 4 = 1. Тогда x 2 = 0, x 1 = 1, и = (1, 0, 0, 1).

Аналогично находим = (y 1 , y 2 , y 3 , y 4). Для этого к полученной выше ступенчатой матрице добавляем новую координатную строку и приводим к ступенчатому виду:

~ ~ .

Для свободной переменной y 3 полагаем y 3 = 1. Тогда y 4 = 0, y 2 = 1, y 1 = 0, и = (0, 1, 1, 0).

Нормой вектора евклидова пространства называется неотрицательное действительное число .

Вектор называется нормированным, если его норма равна 1.

Чтобы нормировать вектор, его следует разделить на его норму.

Ортогональная система нормированных векторов называется ортонормированной.

У п р а ж н е н и е 7.2. Дополнить систему векторов до ортонормированного базиса пространства:

а) = (1/2, 1/2, 1/2, 1/2), = (-1/2, 1/2, -1/2, 1/2);

б) = (1/3, -2/3, 2/3).

Линейные отображения

Пусть U и V – линейные пространства над полем F. Отображение f: U ® V называется линейным, если и .

П р и м е р 8.1. Являются ли линейными преобразования трехмерного пространства:

а) f(x 1 , x 2 , x 3) = (2x 1 , x 1 – x 3 , 0);

б) f(x 1 , x 2 , x 3) = (1, x 1 + x 2 , x 3).

Р е ш е н и е.

а) Имеем f((x 1 , x 2 , x 3) + (y 1 , y 2 , y 3)) = f(x 1 + y 1 , x 2 + y 2 , x 3 + y 3) =

= (2(x 1 + y 1), (x 1 + y 1) – (x 3 + y 3), 0) = (2x 1 , x 1 – x 3 , 0) + (2y 1 , y 1 - y 3 , 0) =

F((x 1 , x 2 , x 3) + f(y 1 , y 2 , y 3));

f(l(x 1 , x 2 , x 3)) = f(lx 1 , lx 2 , lx 3) = (2lx 1 , lx 1 – lx 3 , 0) = l(2x 1 , x 1 – x 3 , 0) =

L f(x 1 , x 2 , x 3).

Следовательно, преобразование является линейным.

б) Имеем f((x 1 , x 2 , x 3) + (y 1 , y 2 , y 3)) = f(x 1 + y 1 , x 2 + y 2 , x 3 + y 3) =

= (1, (x 1 + y 1) + (x 2 + y 2), x 3 + y 3);

f((x 1 , x 2 , x 3) + f(y 1 , y 2 , y 3)) = (1, x 1 + x 2 , x 3) + (1, y 1 + y 2 , y 3) =

= (2, (x 1 + y 1) + (x 2 + y 2), x 3 + y 3) ¹ f((x 1 , x 2 , x 3) + (y 1 , y 2 , y 3)).

Следовательно, преобразование не является линейным.

Образом линейного отображения f: U ® V называется множество образов векторов из U, то есть

Im (f) = {f() ï Î U}. + … + a m1

У п р а ж н е н и е 8.1. Найти ранг, дефект, базисы образа и ядра линейного отображения f, заданного матрицей:

а) А = ; б) А = ; в) А = .

Страница 1

Подпространство, его базис и размерность.

Пусть L – линейное пространство над полем P и A – подмножество из L . Если A само составляет линейное пространство над полем P относительно тех же операций, что и L , то A называют подпространством пространства L .

Согласно определению линейного пространства, чтобы A было подпространством надо проверить выполнимость в A операций:

1) :
;

2)
:
;

и проверить, что операции в A подчинены восьми аксиомам. Однако последнее будет излишним (в силу того, что эти аксиомы выполняются в L) т.е. справедлива следующая

Теорема. Пусть L линейное пространство над полем P и
. Множество A тогда и только тогда является подпространством L, когда выполняются следующие требования:

1. :
;

2.
:
.

Утверждение. Если L n -мерное линейное пространство и A его подпространство, то A также конечномерное линейное пространство и его размерность не превосходит n .

Пример 1. Является ли подпространством пространства векторов-отрезков V 2 множество S всех векторов плоскости, каждый из которых лежит на одной из осей координат 0x или 0y?

Решение : Пусть
,
и
,
. Тогда
. Следовательно, S не является подпространством .

Пример 2. V 2 векторов-отрезков плоскости множество S всех векторов плоскости, начала и концы которых лежат на данной прямой l этой плоскости?

Решение .

Если вектор
умножить на действительное число k , то получим вектор
, также принадлежащий S. Если и – два вектора из S, то
(по правилу сложения векторов на прямой). Следовательно, S является подпространством .

Пример 3. Является ли линейным подпространством линейного пространства V 2 множество A всех векторов плоскости, концы которых лежат на данной прямой l , (предположить, что начало любого вектора совпадает с началом координат)?

Решение.

В случае, когда прямая l не проходит через начало координат множество А линейным подпространством пространства V 2 не является, т.к.
.

В случае, когда прямая l проходит через начало координат, множество А является линейным подпространством пространства V 2 , т.к.
и при умножении любого вектора
на действительное число α из поля Р получим
. Таким образом, требования линейного пространства для множества А выполнены.

Пример 4. Пусть дана система векторов
из линейного пространства L над полем P . Доказать, что множество всевозможных линейных комбинаций
с коэффициентами
из P является подпространством L (это подпространство A называют подпространством, порожденным системой векторов
или линейной оболочкой этой системы векторов , и обозначают так:
или
).

Решение . Действительно, так как , то для любых элементов x , y A имеем:
,
, где
,
. Тогда

Так как
, то
, поэтому
.

Проверим выполнимость второго условия теоремы. Если x – любой вектор из A и t – любое число из P , то . Поскольку
и
,
, то
,
, поэтому
. Таким образом, согласно теореме, множество A – подпространство линейного пространства L .

Для конечномерных линейных пространств справедливо и обратное утверждение.

Теорема. Всякое подпространство А линейного пространства L над полем является линейной оболочкой некоторой системы векторов.

При решении задачи нахождения базиса и размерности линейной оболочки используют следующую теорему.

Теорема. Базис линейной оболочки
совпадает с базисом системы векторов
. Размерность линейной оболочки
совпадает с рангом системы векторов
.

Пример 4. Найти базис и размерность подпространства
линейного пространства Р 3 [ x ] , если
,
,
,
.

Решение . Известно, что векторы и их координатные строки (столбцы) обладают одинаковыми свойствами (в отношении линейной зависимости). Составляем матрицу A =
из координатных столбцов векторов
в базисе
.

Найдем ранг матрицы A .

. М 3 =
.
.

Следовательно, ранг r (A )= 3. Итак, ранг системы векторов
равен 3. Значит, размерность подпространства S равна 3, а его базис состоит из трех векторов
(т.к. в базисный минор
входят координаты только этих векторов)., . Эта система векторов линейно независима. Действительно, пусть .

И
.

Можно убедиться, что система
линейно зависима при любом векторе x из H . Этим доказано, что
максимальная линейно независимая система векторов подпространства H , т.е.
– базис в H и dimH =n 2 .

страница 1



Что еще почитать