Как осуществляется тканевое дыхание. Этапы клеточного дыхания. в) митохондриальное окисление

Тканевое дыхание - это совокупность реакций аэробного окисления органических молекул в клетке, при которых молекулярный кислород является обязательным субстратом для образования продуктов окисления. Однако использоваться клеткой кислород может для разных задач:

1. во внутренней мембране митохондрий кислород является конечным акцептором электронов от окисляемых субстратов (НАДН·Н + или ФАДН 2) с возможностью включения его активной формы (оксид-анион; атомарный кислород) в молекулу воды – одного из конечных продуктов окисления органических молекул в клетках аэробного типа;

2. монооксигеназные системы внутренней мембраны митохондрий или мембран эндоплазматического ретикулума (ЭПР) используют один атом молекулярного кислорода для его включения в молекулы органических субстратов с целью модификации их структуры и появления таких функциональных групп, как гидроксильная, кето-, альдегидная, карбоксильная группы;

3. диоксигеназные системы ЭПР используют два атома молекулярного кислорода для образования перекисных соединений тип R 2 O 2 . Такие перекиси клетка утилизирует благодаря антиоксидантным ферментативным системам: глутатионпероксидаза и др..

Задача 1 выполняется клеткой аэробного типа преимущественно тогда, когда в клетке появляются вещества-энергоисточники, и есть необходимость для продукции энергии путем включения этих веществ–энергоисточников в катаболические пути. Тканевое дыхание клетки можно представить в виде стадий, их три:

1 стадия тканевого дыхания - 2-я стадия катаболических процессов;

2 стадия тканевого дыхания – Цикл Трикарбоновых Кислот (ЦТК);

3 стадия тканевого дыхания - функция дыхательной цепи внутренней мембраны митохондрий.

1-я и 2-я стадии тканевого дыхания продуцируют в цитозоле и в матриксе митохондрий восстановленные формы коферментов и простетических групп – потенциальные доноры электронов в дыхательную цепь внутренней мембраны митохондрий. Именно в этой мембране присутствует специальный комплекс ферментов и липофильных веществ (убихинон; коэнзим Q), который переносит электроны от восстановленных форм коферментов (НАДН) и простетических групп (ФАДН 2) на атомарный кислород.

В структуре митохондрий выделяют наружную мембрану, внутреннюю мембрану, матрикс, межмембранное пространство. В матриксе и, частично, во внутренней мембране локализованы процессы первой и второй стадий тканевого дыхания: бета-окисление высших жирных кислот, реакции обмена аминокислот - окислительное дезаминирование, трансаминирование, цикл Кребса (ЦТК) за исключением сукцинатдегидрогеназной реакции.

Обе мембраны пронизывают транспортные системы, отвечающие за:

1. транспорт аминокислот;

2. транспорт АТФ/АДФ;

3. транспорт ионов;

4. челночные системы (малат-аспартатная, глицеролфосфатная), осуществляющие транспорт электронов и протонов от цитозольных форм восстановленных коферментов в матрикс и во внутреннюю мембрану;

5. транспорт трикарбоновых кислот;

6. транспорт ацилов ВЖК;

7. транспорт катионов и анионов.

Транспортные системы обеспечивают постоянство состава матрикса митохондрии, обмен веществами с цитоплазмой, доставку образующихся субстратов из матрикса в цитоплазму для нужд клетки.

Наиболее важной с энергетической точки зрения является третья стадия тканевого дыхания, т.е. функция дыхательной цепи внутренней мембраны митохондрий. Дыхательная цепь состоит из переносчиков электронов от восстановленных форм коферментов на кислород. Переносчики элетронов объединены в комплексы дыхательной цепи. Деление участников дыхательной цепи на комплексы (I-IV) возникло в ходе экспериментальных исследований по выделению и разделению компонентов дыхательной цепи с целью изучения их структуры и функции.

Комплекс I дыхательной цепи состоит из трансмембранного белка-фермента НАДН-дегидрогеназы (небелковая часть – ФМН) и железосеросодержащих белков (FeS-белки). Из матрикса НАДН-формы мигрируют во внутреннюю мембрану митохондрий, где их захватывает флавопротеин НАДН–дегидрогеназа. Протекает окислительно-восстановительная реакция:

НАДН·Н + + ФМН·ДГаза ® НАД + + ФМНН 2 ·ДГаза

ФМН ФМНН 2

Восстановленная форма НАДН-ДГазы через FeS-белки комплекса I передает электроны убихинону (КоQ), а протоны убихинон может захватывать из матрикса:

KoQ KoQH 2

Убихинон - очень липофильная структура, свободно двигающаяся в направлении от поверхности внутренней мембраны, обращенной к матриксу (КоQH 2), к поверхности внутренней мембраны, обращенной к межмембранному пространству (ММП) и обратно (КоQ). Восстановленная форма убихинона отдает электроны комплексу III дыхательной цепи, содержащему цитохромы в , с 1 и FeS-белки. Цитохромы в и с 1 – гемопротеины третичной структуры. Особенностью гемов является наличие в них катионов железа, меняющих степень окисления Fe² + /Fe³ + . Гем цитохромов в , с 1 или с способен принять только 1 ē, поэтому для передачи 2ē, которые транспортирует дыхательная цепь от окисляемого субстрата (восстановленной формы кофермента), нужны два цитохрома каждого типа. Цитохромы в , с 1 и с не способны принимать в свою структуру ионы Н + . Следующим акцептором электронов является цитохром с (самый подвижный во внутренней мембране цитохром; не входит ни в один комплекс), это тоже гемопротеин третичной структуры.

Восстановленная форма цитохрома с (Fe² +) отдает далее электроны цитохром с -оксидазе (ЦХО). Цитохром с -оксидаза – трансмембранный белок, гемопротеин четвертичной структуры, состоящий из шести субъединиц: 4а и 2а 3 , последние содержат только Cu² + /Cu + . Данный белок называют также комплексом IV дыхательной цепи. Цитохром с -оксидаза, получая 4ē от цитохромов С (Fe² +), приобретает высокое сродство к молекулярному кислороду. Каждая пара электронов переходит на 1 атом молекулярного кислорода с формированием оксид-аниона, которые соединяясь с четырьмя протонами дают образование эндогенной воды: 4Н + +4 ē +О 2 →2Н 2 О

Дыхание (лат. respiratio) -- основная форма диссимиляции у человека, животных, растений и многих микроорганизмов. Дыхание -- это физиологический процесс, обеспечивающий нормальное течение метаболизма (обмена веществ и энергии) живых организмов и способствующий поддержанию гомеостаза (постоянства внутренней среды), получая из окружающей среды кислород (О2) и отводя в окружающую среду в газообразном состоянии некоторую часть продуктов метаболизма организма (СО2, H2O и другие). В зависимости от интенсивности обмена веществ человек выделяет через лёгкие в среднем около 5 -- 18 литров углекислого газа (СО2), и 50 грамм воды в час. А с ними -- около 400 других примесей летучих соединений, в том числе и ацетон). В процессе дыхания богатые химической энергией вещества, принадлежащие организму, окисляются до бедных энергией конечных продуктов (диоксида углерода и воды), используя для этого молекулярный кислород.

Дыхание у человека включает внешнее дыхание и тканевое дыхание.

Функция внешнего дыхания обеспечивается как дыхательной системой, так и системой кровообращения. Атмосферный воздух попадает в лёгкие из носоглотки (где предварительно очищается от механических примесей, увлажняется и согревается) через гортань и трахеобронхиальное дерево (трахею, главные бронхи, долевые бронхи, сегментарные бронхи, дольковые бронхи, бронхиолы и альвеолярные ходы) попадает в лёгочные альвеолы. Дыхательные бронхиолы, альвеолярные ходы и альвеолярные мешочки с альвеолами составляют единое альвеолярное дерево, а вышеуказанные структуры отходящие от одной конечной бронхиолы образуют функционально-анатомическую единицу дыхательной паренхимы лёгкого -- амцинус (лат. бcinus -- гроздь). Смена воздуха обеспечивается дыхательной мускулатурой, осуществляющей вдох (набор воздуха в лёгкие) и выдох (удаление воздуха из лёгких). Через мембрану альвеол осуществляется газообмен между атмосферным воздухом и циркулирующей кровью. Далее кровь, обогащённая кислородом возвращается в сердце, откуда по артериям разносится ко всем органам и тканям организма. По мере удаления от сердца и деления, калибр артерий постепенно уменьшается до артериол и капилляров, через мембрану которых происходит газообмен с тканями и органами. Таким образом, граница между внешним и клеточным дыханием пролегает по клеточной мембране периферических клеток.

Внешнее дыхание человека включает две стадии:

  • 1. вентиляция альвеол,
  • 2. диффузия газов из альвеол в кровь и обратно.

Вентиляция альвеол осуществляется чередованием вдоха (инспирация) и выдоха (экспирация). При вдохе в альвеолы поступает атмосферный воздух, а при выдохе из альвеол удаляется воздух, насыщенный углекислым газом. Вдох и выдох осуществляется путём изменения размеров грудной клетки с помощью дыхательных мышц.

Выделяют два типа дыхания по способу расширения грудной клетки:

  • 1. грудной тип дыхания (расширение грудной клетки производится путём поднятия рёбер),
  • 2. брюшной тип дыхания (расширение грудной клетки производится путём уплощения диафрагмы). Тип дыхания зависит от двух факторов:
  • 1. возраст человека (подвижность грудной клетки уменьшается с возрастом),
  • 2. профессия человека (при физическом труде преобладает брюшной тип дыхания).

Тканевое дыхание.

Тканевое или клеточное дыхание -- совокупность биохимических реакций, протекающих в клетках живых организмов, в процессе которых происходит окисление углеводов, липидов и аминокислот до углекислого газа и воды. Высвобожденная энергия запасается в химических связях макроэргических соединений (молекула аденозинтрифосфорной кислоты и других макро эргов) и может быть использована организмом по мере необходимости. Входит в группу процессов катаболизма. На клеточном уровне рассматривают два основных вида дыхания: аэробное (с участием окислителя-кислорода) и анаэробное. При этом, физиологические процессы транспортировки к клеткам многоклеточных организмов кислорода и удалению из них углекислого газа рассматриваются как функция внешнего дыхания.


Это процесс потребление клетками тканей организма кислорода, который участвует в биологическом окислении. Такой вид окисления называют аэробным окислением. Если конечным акцептором в цепи переноса водорода выступает не кислород, а другие вещества (например пировиноградная кислота), то такой тип окисления называют анаэробным.

Т.о. биологическое окисление - это дегидрирование субстрата с помощью промежуточных переносчиков водорода и его конечного акцептора. Биологическое окисление питательных веществ происходит в митохондриях. В них были обнаружены ферменты, участвующие в цикле лимонной кислоты, дыхательной цепи, окислительного фосфорилирования, в расщеплении жирных кислот и ряда аминокислот.

Дыхательная цепь (ферменты тканевого дыхания) - это переносчики протонов и электронов от окисляемого субстрата на кислород. Окислитель - это соединение, способное принимать электроны. Такая способность количественно характеризуется окислительно-восстановительным потенциалом по отношению к стандартному водородному электроду, рН которого равен 7,0. Чем меньше потенциал соединения, тем сильнее его восстанавливающие свойства и наоборот.

Особенности тканевого дыхания

Процесс тканевого дыхания нельзя считать тождественным процессам биологического окисления (ферментативным процессам окисления различных субстратов, протекающим в животных, растительных и микробных клетках), поскольку значительная часть таких окислительных превращений в организме происходит в анаэробных условиях, т.е. без участия молекулярного кислорода, в отличие от дыхания тканей.

Большая часть энергии в аэробных клетках образуется благодаря дыханию тканей, и количество образующейся энергии зависит от его интенсивности. Интенсивность Д. т. определяется скоростью поглощения кислорода на единицу массы ткани; в норме она обусловлена потребностью ткани в энергии. Интенсивность его наиболее высока в сетчатке глаза, почках, печени; она значительна в слизистой оболочке кишечника, щитовидной железе, яичках, коре головного мозга, гипофизе, селезенке, костном мозге, легких, плаценте, вилочковой железе, поджелудочной железе, диафрагме, сердце, скелетной мышце, находящейся в состоянии покоя. В коже, роговице и хрусталике глаза интенсивность тканевого дыхания невелика. Гормоны щитовидной железы, жирные кислоты и другие биологически активные вещества способны активизировать тканевое дыхание.

Интенсивность такого дыхания определяют полярографически или манометрическим методом в аппарате Варбурга. В последнем случае для характеристики используют так называемый дыхательный коэффициент - отношение объема выделившегося углекислого газа к объему кислорода, поглощенного определенным количеством исследуемой ткани за определенный промежуток времени.

Т. о. любое соединение может отдавать электроны только соединению с более высоким окислительно-восстановительным потенциалом. В дыхательной цепи каждое последующее звено имеет более высокий потенциал, чем предыдущее.

Дыхательная цепь

Дыхательная цепь состоит из: НАД - зависимой дегидрогеназы; ФАД- зависимой дегидрогеназы; Убихинона (КоQ); Цитохрмов b, c, a+a3 .

НАД-зависимые дегидрогеназы. В качестве кофермента содержат НАД и НАДФ. Пиридиновое кольцо никотинамида способно присоединять электроны и протоны водорода.

ФАД и ФМН-зависимые дегидрогеназы содержат в качестве кофермента фосфорный эфир витамина В2 (ФАД).

Убихинон (КоQ) отнимает водород у флавопротеидов и превращается при этом в гидрохинон.

Цитохромы - белки хромопротеиды, способные присоединять электроны, благодаря наличию в своем составе в качестве простетических групп железопорфиринов. Они принимают электрон от вещества, являющегося немного боле сильным восстановителем, и передают его более сильному окислителю. Атом железа связан с атомом азота имидазольного кольца аминоксилоты гистидина с одной стороны от плоскости порфиринового цикла, а с другой стороны с атомом серы метионина. Поэтому потенциальная способность атома железа в цитохромах к связыванию кислорода подавлена.

В цитохроме с порфириновая плоскость ковалентно связана с белком через два остатка цистеина, а в цитохромах b и а, она ковалентно не связано с белком.

В цитохроме а+а3 (цитохромоксидазе) вместо протопорфирина содержатся порфирин А, который отличатся рядом структурных особенностей. Пятое координационное положение железа занято аминогруппой, принадлежащей остатку аминосахара, входящего в состав самого белка.

В отличии от гема гемолгобина атом железа в цитохромах может обратимо переходить из двух в трехвалентное состояние это обеспечивает транспорт электронов.

Потребности тканей в кислороде и его запасы

Потребности тканей в кислороде зависят от функционального состояния клеток, входящих в ее состав. Скорость потребления кислорода обычно выражается в мл кислорода на 1 г веса в минуту. В состоянии покоя кислород относительно интенсивно поглощается миокардом, серым веществом головного мозга (в частности, корой головного мозга), печенью и корковым веществом почек. В тоже время скелетные мышцы, селезенка и белое вещество головного мозга в покое потребляют мало кислорода.
При увеличении активности какого-либо органа потребность его в кислороде увеличивается. При физической нагрузке потребление кислорода миокардом может увеличиться в 3 - 4 раза, а работающими скелетными мышцами - более чем в 20 - 50 раз по сравнению с покоем. Потребление кислорода почками возрастает при увеличении интенсивности реабсорбции ионов натрия.

Количество кислорода, которое клетки могут использовать для окислительных процессов, зависит от конвекционного переноса кислорода кровью и диффузии кислорода из капилляров в ткани. Поскольку единственным запасом кислорода в большинстве тканей служит его физически растворенная фракция, снижение поступления кислорода приводит к кислородному голоданию и к замедлению окислительных процессов.
Единственной тканью, в которой имеются запасы кислорода, является мышечная ткань. Роль депо кислорода играет пигмент миоглобин, способный обратимо связывать кислород. Однако содержание миоглобина в мышцах человека невелико, так, среднее содержание миоглобина в сердце составляет 4 мг/г. Поскольку 1 г миоглобина может связать примерно до 1,34 мл кислорода, запасы кислорода в сердце составляют около 0,005 мл кислорода на 1г ткани. Этого количества в условиях полного прекращения доставки кислорода к миокарду может хватить для того, чтобы поддерживать окислительные процессы лишь в течение примерно 3 - 4 секунд.
Миоглобин играет роль кратковременного депо кислорода. В миокарде кислород, связанный с миоглобином, обеспечивает окислительные процессы в тех участках, кровоснабжение которых на короткий срок снижается или полностью прекращается во время систолы.
В начальном периоде интенсивной мышечной нагрузки увеличенные потребности скелетных мышц в кислороде частично удовлетворяются за счет кислорода, высвобождающегося миоглобином. В дальнейшем возрастает мышечный кровоток, и поступление кислорода к мышцам вновь становится адекватным. Восполнение запасов оксимиоглобина является составной частью кислородного долга, который должен быть покрыт каждым мышечным волокном после окончания работы.

Кислородное голодание тканей

При ряде патологических состояний страдает снабжение тканей кислородом. В этих случаях энергетические потребности клеток могут в течение короткого времени удовлетворяться за счет ограниченных запасов энергии в виде АТФ и креатинфосфата, а также за счет анаэробного гликолиза. Однако эти источники энергии недостаточны и могут использоваться недолго, так как в анаэробных условиях резко возрастает потребность клеток в глюкозе, поступление которой обычно не может удовлетворять эту потребность, и во-вторых, в процессе гликолиза образуется большое количество лактата, который медленно удаляется из ткани для последующей переработки (например, для расщепления в печени, почках или миокарде, или для синтеза гликогена). При значительном недостатке кислорода содержание лактата в крови постоянно нарастает, что приводит к нереспираторному ацидозу. Когда рН внутриклеточной среды падает ниже уровня оптимальной активности ферментных систем, наступают выраженные нарушения клеточного метаболизма.
Основные причины, приводящие к кислородному голоданию (тканевой гипоксии), это понижение напряжения кислорода в артериальной крови (артериальная гипоксия), уменьшение кислородной емкости крови (анемия) и уменьшение кровоснабжения того или иного органа (ишемия).



Итак, клеточное дыхание происходит в клетке.

Но где именно? Какая органелла осуществляет этот процесс?

Основной этап клеточного дыхания осуществляется в . Как известно, основной продукт работы митохондрии — молекулы АТФ — синоним понятия «энергия» в биологии. Действительно, основным продуктом этого процесса является энергия, молекулы АТФ.

АТФ — это молекула — синоним энергии в биологии. Расшифровывется как Аденозинтрифосфат или Аденозинтрифосфорная кислота. Как видно из рисунка формулы, в составе молекулы есть:

  1. три связи с остатками фосфорной кислоты, при разрыве которых выделяется большое количество энергии,
  2. углевод рибоза (пятиатомый сахар) и
  3. азотистое основание

1 Этап клеточного дыхания — подготовительный

Каким образом вещества попадают в клетки? В процессе пищеварения организма. Суть процесса пищеварения — расщепление полимеров, поступающих в организм с пищей, до мономеров:

  • расщепляются до аминокислот;
  • — до глюкозы;
  • расщепляются до глицерина и жирных кислот.

Т.е. в клетку поступают уже мономеры.

2 Этап клеточного пищеварения

Гликолиз — ферментативный процесс последовательного расщепления глюкозы в клетках, сопровождающийся синтезом АТФ.

Гликолиз при аэробных условиях ведёт к образованию пировиноградной кислоты (ПВК) (пирувата),

гликолиз в анаэробных условиях (бескислородных или при недостатке кислорода) ведёт к образованию молочной кислоты (лактата).

CH 3 -CH(OH)-COOH

Процесс идет с участием молекул фосфорной кислоты, поэтому называется окислительное фосфорилирование

Гликолиз является основным путём глюкозы в организме животных.

Превращения происходят в , т.е. процесс будет однозначно анаэробным: молекула глюкозы расщепится до ПВК — пировиноградной кислоты с выделением 2 молекул АТФ:

3 Этап клеточного пищеварения (кислородный)

Поступая в митохондрию, происходит окисление: ПВК под действием кислорода расщепляется до углекислого газа (суммарное уравнение):

Вначале отщепляется один углеродный атом пировиноградной кислоты. При этом образуется углекислый газ, энергия (она запасается в одной молекуле НАДФ) и двухуглеродная молекула - ацетильная группа. Затем реакционная цепь поступает в метаболический координационный центр клетки - цикл Кребса .

Цикл Кребса

(цикл лимонной кислоты)

Цикл Кребса — это реакции, которые начинаются, когда определенная входящая молекула соединяется с другой молекулой, выполняющей функцию «помощника». Такая комбинация инициирует серию других химических реакций, в которых образуются молекулы-продукты и в конце воссоздается молекула-помощник, которая может начать весь процесс вновь.

Для переработки энергии, запасенной в одной молекуле глюкозы , цикл Кребса нужно пройти дважды

Процесс многостадийный, и в нем, помимо различных кислот с интересными названиями участвуют коферменты (КоА).

Что такое коферменты?

(коэнзимы)

  • это органические вещества небольшого размера
  • они способны соединяться с белками (или прямо с ферментами, у которых, кстати, белковая природа), образуя активное вещество, косплекс, которое будет являться чем-то вроде катализатора.

Приставка «ко-» — это как «со-» — сопродюсер, соотечественник и т.п. Т.е. «вместе, с «

Гликолиз - катаболический путь исключительной важности.

Он обеспечивает энергией клеточные реакции, в том числе и синтез белка.

Промежуточные продукты гликолиза используются при синтезе жиров.

Пируват также может быть использован для синтеза других соединений. Благодаря гликолизу производительность митохондрий и доступность кислорода не ограничивают мощность мышц при кратковременных предельных нагрузках.

Тканевое дыхание и биологическое окисление. Распад органических соединений в живых тканях, сопровождающийся потреблением молекулярного кислорода и приводящий к выделению углекислого газа и воды и образованию биологических видов энергии, называется тканевым дыханием. Тканевое дыхание представляют как конечный этап пути превращений моносахаров (в основном глюкозы) до указанных конечных продуктов, в который на разных стадиях включаются другие сахара и их производные, а также промежуточные продукты распада липидов (жирные кислоты), белков (аминокислоты) и нуклеиновых оснований. Итоговая реакция тканевого дыхания будет выглядеть следующим образом:

С6Н12О6 + 6O2 = 6СO2+ 6Н2O + 2780 кДж/моль.

Дыхательная цепь включает три белковых комплекса (комплексы I, III и IV), встроенных во внутреннюю митохондриальную мембрану, и две подвижные молекулы-переносчики - убихинон (кофермент Q) и цитохром с.

Комплексы дыхательной цепи построены из множества полипептидов и содержат ряд различных окислительно-восстановительных коферментов, связанных с белками (см. сс. 108, 144). К ним принадлежат флавин [ФМН (FMN) или ФАД (FAD), в комплексах I и II], железо-серные центры (в I, II и III) и группы гема (в II, III и IV). Детальная структура большинства комплексов еще не установлена.

Электроны поступают в дыхательную цепь различными путями. При окислении НАДН + Н+ комплекс I переносит электроны через ФМН и Fe/S-центры на убихинон. Образующиеся при окислении сукцината, ацил-КоА и других субстратов электроны переносятся на убихинон комплексом II или другой митохондриальной дегидрогеназой через связанный с ферментом ФАДН2 или флавопротеин (см. с. 166), При этом окисленная форма кофермента Q восстанавливается в ароматический убигидрохинон. Последний переносит электроны в комплекс III, который поставляет их через два гема b, один Fe/S-центр и гем с1 на небольшой гемсодержащий белок цитохром с. Последний переносит электроны к комплексу IV, цитохром с-оксидазе. Цитохром с-оксидаза содержит для осуществления окислительно-восстановительных реакций два медьсодержащих центра (CuA и CuB) и гемы а и а3, через которые электроны, наконец, поступают к кислороду. При восстановлении О2 образуется сильный основной анион О2-, который связывает два протона и переходит а воду. Поток электронов сопряжен с образованным комплексами I, III и IV протонным градиентом.

26. Превращение углеводов в организме. Переваривание углеводов в пищеварительном тракте. Образование гликогена .

Превращения углеводов

Процесс превращения углеводов начинается с переваривания их в ротовой полости под влиянием слюны, затем некоторое время продолжается в желудке и заканчивается в тонком кишечнике - основном месте гидролиза углеводов под влиянием ферментов, содержащихся в пищеварительном соке поджелудочной железы и тонкого кишечника. Продукты гидролиза - моносахара - всасываются в кишечнике и поступают в кровь воротной вены, по которой моносахариды пищи поступают в печень, где они превращаются в глюкозу. Глюкоза далее поступает в кровь и может вступить в процессы, протекающие в клетках или переходит в гликоген печени.


В пищеварительных соках отсутствует фермент целлюлаза, гидролизующая поступающую с растительной пищей целлюлозу. Однако в кишечнике имеются микроорганизмы, ферменты которых могут расщеплять некоторое количество целлюлозы. При этом образуется дисахарид целлобиоза, распадающийся потом до глюкозы.

Не расщепившаяся целлюлоза является механическим раздражителем стенки кишечника, активирует его перистальтику и способствует продвижению пищевой массы.

Под действием ферментов микроорганизмов продукты распада сложных углеводов могут подвергаться брожению, в результате чего образуются органические кислоты, СО2,СН4 и Н2.

Прежде всего глюкоза подвергается фосфорилированию при участии фермента гексокиназы, а в печени – и глюкокиназы. Далее глюкозо-6-фосфат под влиянием фермента фосфоглюкомутазы переходит в глюкозо-1-фос-фат:

Образовавшийся глюкозо-1-фосфат уже непосредственно вовлекается в синтез гликогена. На первой стадии синтеза глюкозо-1-фосфат вступает во взаимодействие с УТФ (уридинтрифосфат), образуя уридиндифосфатглю-козу (УДФ-глюкоза) и пирофосфат. Данная реакция катализируется ферментом глюкозо-1-фосфат-уридилилтрансферазой (УДФГ-пирофосфорила-за):

Глюкозо-1-фосфат + УТФ < = > УДФ-глюкоза + Пирофосфат.

Приводим структурную формулу УДФ-глюкозы

Стадии образования гликогена – происходит перенос глюкозного остатка, входящего в состав УДФ-глюкозы, на глюкозидную цепь гликогена («затравочное» количество). При этом образуется α-(1–>4)-связь между первым атомом углерода добавляемого остатка глюкозы и 4-гидроксильной группой остатка глюкозы цепи. Эта реакция катализируется ферментом гликогенсинтазой. Необходимо еще раз подчеркнуть, что реакция, катализируемая гликогенсинтазой, возможна только при условии, что полисахаридная цепь уже содержит более 4 остатков D-глю-козы. Образующийся УДФ затем вновь фосфорилируется в УТФ за счет АТФ, и таким образом весь цикл превращений глюкозо-1-фосфата начинается сначала.



Что еще почитать