Арены: химические свойства и способы получения. Ароматические углеводороды. Бензол и его гомологи Получение аренов в промышленности

Способы получения. 1. Получение из алифатических углеводородов. Для получения бензола и его гомологов в промышленности используют ароматизацию предельных углеводородов, входящих в состав нефти. При пропускании алканов с неразветвленной цепью, состоящей не менее чем из шести атомов углерода, над нагретой платиной или оксидом хрома происходит дегидрирование с одновременным замыканием цикла (дегидроциклизация ). При этом из гексана получают бензол, а из гептана - толуол.

2. Дегидрирование циклоалканов также приводит к ароматическим углеводородам; для этого пары циклогексана и его гомологов пропускают над нагретой платиной.

3. Бензол можно получить при тримеризации ацетилена, для чего ацетилен пропускают над активированным углем при 600 °С.

4. Гомологи бензола получают из бензола при его взаимодействии с алкилгалогенидами в присутствии галогенидов алюминия (реакция алкилирования, или реакция Фриделя-Крафтса).

5. При сплавлении солей ароматических кислот со щелочью выделяются арены в газообразном виде.

Химические свойства. Ароматическое ядро, обладающее подвижной системой л-электронов, - удобный объект для атаки электрофильными реагентами. Этому способствует также пространственное расположение л-электронного облака с двух сторон плоского a-скелета молекулы (см. рис. 23.1, б).

Для аренов наиболее характерны реакции, протекающие по механизму электрофильного замещения, обозначаемого символом S E (от англ, substitution, electrophilic).

Механизм S E можно представить следующим образом:

На первой стадии электрофильная частица X притягивается к л-электронному облаку и образует с ним л-комплекс. Затем два из шести л-электронов кольца образуют a-связь между X и одним из атомов углерода. При этом ароматичность системы нарушается, так как в кольце остается только четыре л-электрона, распределенные между пятью атомами углерода (a-комплекс). Для сохранения ароматичности a-комплекс выбрасывает протон, а два электрона связи С-Н переходят в л-электронную систему.

По механизму электрофильного замещения протекают следующие реакции ароматических углеводородов.

1. Галогенирование. Бензол и его гомологи взаимодействуют с хлором или бромом в присутствии катализаторов - безводных А1С1 3 , FeCl 3 , А1Вг 3 .

По этой реакции из толуола получают смесь орто- и пара-изоме- ров (см. ниже). Роль катализатора заключается в поляризации нейтральной молекулы галогена с образованием из нее электрофильной частицы.

2. Нитрование. Бензол очень медленно реагирует с концентрированной азотной кислотой даже при сильном нагревании. Однако при действии нитрующей смеси (смеси концентрированных азотной и серной кислот) реакция нитрования проходит достаточно легко.

3. Сульфирование . Реакция легко проходит с «дымящей» серной кислотой (олеумом).

  • 4. Алкилирование по Фриделю-Крафтсу - см. выше способы получения гомологов бензола.
  • 5. Алкилирование алкенами. Эти реакции широко используются в промышленности для получения этилбензола и изопропилбензола (кумола). Алкилирование проводят в присутствии катализатора А1С1 3 . Механизм реакции сходен с механизмом предыдущей реакции.

Все рассмотренные выше реакции протекают по механизму электрофильного замещения S E .

Наряду с реакциями замещения ароматические углеводороды могут вступать в реакции присоединения, однако эти реакции приводят к разрушению ароматической системы и поэтому требуют больших затрат энергии и протекают только в жестких условиях.

6. Гидрирование бензола идет при нагревании и высоком давлении в присутствии металлических катализаторов (Ni, Pt, Pd). Бензол превращается в циклогексан.

Гомологи бензола при гидрировании дают производные циклогексана.

7. Радикальное галогенирование бензола происходит при взаимодействии его паров с хлором только под воздействием жесткого ультрафиолетового излучения. При этом бензол присоединяет три молекулы хлора и образует твердый продукт гексахлорциклогек- сан (гексахлоран) С 6 Н 6 С1 6 (атомы водорода в структурных формулах не указаны).

8. Окисление кислородом воздуха. По устойчивости к действию окислителей бензол напоминает алканы - реакция требует жестких условий. Например, окисление бензола кислородом воздуха происходит только при сильном нагревании (400 °С) его паров на воздухе в присутствии катализатора V 2 0 5 ; продукты - смесь малеиновой кислоты и ее ангидрида.


Гомологи бензола. Химические свойства гомологов бензола отличны от свойств бензола, что обусловлено взаимным влиянием алкильного радикала и бензольного кольца.

Реакции в боковой цепи. По химическим свойствам алкильные заместители в бензольном кольце подобны алканам. Атомы водорода в них замещаются на галоген по радикальному механизму (S R). Поэтому в отсутствие катализатора при нагревании или УФ облучении идет радикальная реакция замещения в боковой цепи. Однако влияние бензольного кольца на алкильные заместители приводит к тому, что в первую очередь замещается водород у атома углерода, непосредственно связанного с бензольным кольцом (а-атома углерода).

Замещение в бензольном кольце по механизму S E возможно только в присутствии катализатора (А1С1 3 или FeCl 3). Замещение в кольце происходит в орто- и пара-положения к алкильному радикалу.

При действии перманганата калия и других сильных окислителей на гомологи бензола боковые цепи окисляются. Какой бы сложной ни была цепь заместителя, она разрушается, за исключением а-атома углерода, который окисляется в карбоксильную группу.

Гомологи бензола с одной боковой цепью дают бензойную кислоту.


Ароматические химические соединения, или арены, представляют собой большую группу карбоциклических соединений, в молекулах которых содержится устойчивый цикл из шести углеродных атомов. Она носит название «бензольное кольцо» и обуславливает особые физические и химические свойства аренов.

К ароматическим углеводородам относится в первую очередь бензол и всевозможные его гомологи и производные.

В молекулах аренов может содержаться несколько бензольных колец. Такие соединения называют многоядерными ароматическими соединениями. Например, нафталин - всем известный препарат для защиты шерстяных изделий от моли.

Бензол

Этот простейший представитель аренов состоит только из бензольного кольца. Его молекулярная формула С6Η6. Структурную формулу молекулы бензола чаще всего представляют циклической формой, предложенной А. Кекуле в 1865 году.

Достоинством этой формулы является верное отражение состава и равноценности всех атомов С и Н в кольце. Однако она не могла объяснить многих химических свойств аренов, поэтому утверждение о наличии трех сопряженных двойных связей С=С является ошибочным. Это стало известно лишь с появлением современной теории связей.

Между тем и сегодня часто встречается написание формулы бензола способом, предложенным Кекуле. Во-первых, с ее помощью удобно записывать уравнения химических реакций. Во-вторых, современные химики видят в ней лишь символ, а не реальную структуру. Строение молекулы бензола сегодня передают различными типами структурных формул.

Строение бензольного кольца

Главной особенностью бензольного ядра можно назвать отсутствие в нем одинарных и двойных связей в традиционном понимании. В соответствии с современными представлениями молекула бензола представляется плоским шестиугольником с длинами сторон равными 0,140 нм. Получается, что длина связи С-С в бензоле является промежуточным значением между одинарной (ее длина 0,154 нм) и двойной (0,134 нм). В той же плоскости лежат и связи С–Н, образующие с ребрами шестиугольника угол в 120°.

Каждый атом С в структуре бензола находится в sp2-гибридном состоянии. Он соединен посредством трех своих гибридных орбиталей с двумя атомами С, расположенными по соседству, и одним атомом Н. То есть образует три s-связи. Еще одна, но уже негибридизованная его 2р-орбиталь, перекрывается с такими же орбиталями соседних атомов С (справа и слева). Ось ее перпендикулярна плоскости кольца, а значит перекрывание орбиталей происходит над и под ней. При этом образуется общая замкнутая π-электронная система. Из-за равнозначного перекрывания 2р-орбиталей шести атомов С происходит своего рода «уравнивание» связей С-С и С=С.

Результатом этого процесса является сходство таких «полуторных» связей и с двойными, и с одинарными. Этим объясняется тот факт, что проявляют арены химические свойства, характерные и для алканов, и для алкенов.

Энергия углерод-углеродной связи в бензольном кольце равняется 490 кДж/моль. Что также является также средней величиной между энергиями простой и кратной двойной связи.


Номенклатура аренов

Основой названий ароматических углеводородов является бензол. Атомы в кольце нумеруют со старшего заместителя. Если же заместители равнозначны, то нумерацию осуществляют по кратчайшему пути.

Для многих гомологов бензола часто используют тривиальные названия: стирол, толуол, ксилол и т. д. Для отражения взаимного расположения заместителей принято использовать приставки οртο-, мета-, пара-.

Если в молекуле имеются функциональные группы, например, карбонильная или карбоксильная, то молекулу арена рассматривают как соединенный с ней ароматический радикал. Например, -С6Η5 – фенил, -C6Η4 – фенилен, С6Η5-СΗ2- – бензил.

Физические свойства

Первые представители в гомологическом ряду бензола – это бесцветные жидкости, имеющие специфичес­кий запах. Их вес легче воды, в которой они практически не растворяются, но хорошо растворяются в большинстве органических растворителей.

Все ароматические углеводороды горят с появлением коптящего пламени, что объясняется высоким содержанием С в молекулах. Температуры плавления и кипения их повышаются с увеличением значений молекулярных масс в гомологическом ряду бензола.

Химические свойства бензола

Из разнообразных химических свойств аренов реакции замещения следует упомянуть отдельно. Также весьма значимы некоторые реакции присоединения, осуществляющиеся в особых условиях, и процессы окисления.

Реакции замещения

Довольно подвижные π-электроны бензольного кольца, способны очень активно реагировать с атакующими электрофилами. В таком электрофильном замещении участвует само бензольное ядро в бензоле и связанная с ним углеводородная цепь в его гомологах. Механизм этого процесса довольно подробно изучен органической химией. Химические свойства аренов, связанные с атакой электрофилов, проявляются посредством трех стадий.

  • Первая стадия. Появление π-комплекса из-за связывания π-электронной системы бензольного ядра с частицей Х+, которая связывается с шестью π-электронами.
  • Вторая стадия. Переход π-комплекса в s, обусловленный выделением из шести π-электронов пары для образования ковалентной связи С-X. А остальные четыре перераспределяются между пятью атомами С в бензольном кольце.
  • Третья стадия. Сопровождается быстрым отщеплением протона от s-комплекса.

Бромирование бензола в присутствии бромидов железа или алюминия без нагревания приводит к получению бромбензола:

C6Η6+ Br2 -> C6Η5-Br + ΗBr.

Нитрование смесью азотной и серной кислот приводит к получению соединений с нитрогруппой в кольце:

C6Η6+ ΗONO2 -> C6Η5-NO2+ Η2O.

Сульфирование осуществляется бисульфониевым ионом, образующимся в результате реакции:

3Η2SO4 ⇄ SO3Η++ Η3O++ 2ΗSO4-,

или триоксид серы.

Соответствует данному химическому свойству аренов реакция:

C6H6+ SO3H+ -> C6H5-SO3H + H+.

Реакции алкильного и ацильного замещения, или реакции Фриделя–Крафтса, проводят в присутствии безводного AlCl3.


Эти реакции маловероятны для бензола и протекают с трудом. Присоединение галогеноводородов и воды к бензолу не происходит. Однако при очень высоких температурах в присутствии платины возможна реакция гидрирования:

С6Η6 + 3Н2 -> С6Н12.

При облучении ультрафиолетом к молекуле бензола могут присоединиться молекулы хлора:

С6Η6 + 3Cl2 -> C6Η6Cl6.

Реакции окисления

Бензол весьма устойчив к окислителям. Так, он не обесцвечивает розовый раствор перманганата калия. Однако в присутствии оксида ванадия он может окисляться кислородом воздуха до малеиновой кислоты:

С6Н6 + 4О -> СООΗ-СΗ=СΗ-СООΗ.

На воздухе бензол горит с появлением копоти:

2C6Η6 + 3O2 → 12C + 6Η2O.

Химические свойства аренов

  1. Замещение.
  • Галогенирование может идти разными путями в зависимости от условия проведения реакции. В присутствии соответствующего галогенида железа или алюминия замещение будет идти в кольце по механизму, подробно описанному выше. Чтобы атом галогена ввести в боковую цепь, взаимодействие проводят при нагревании без катализаторов или на свету.
  • Нитрование ароматических углеводородов ионом нитрония, который образуется при смешивании серной и азотной кислоты, приводит к соединению нитрогруппы с бензольным ядром. Соединение нитрогруппы с боковой цепью возможно при проведении реакции Коновалова. 2. Окисление. Данное химическое свойство аренов можно рассматривать с двух точек зрения. С одной, они довольно легко окисляются, причем действию подвергается боковая цепь с образованием карбоксильной группы. Если в молекуле ароматического углеводорода с кольцом соединены два заместителя, то образуется двухосновная кислота. С другой стороны, они, как и бензол, горят с образованием сажи и воды.

Правила ориентации

Какое именно положение (о-, м- или п-) займет заместитель в ходе взаимодействия электрофильного агента с бензольным кольцом определяется правилами:

  • если в бензольном ядре уже имеется какой-либо заместитель, то именно он направляет входящую группу в определенное положение;
  • все ориентирующие заместители делят на две группы: ориентанты первого рода направляют поступающую группу атомов в орто- и пара-положения (-NΗ2, -ОΗ,-СΗ3, -С2Н5, галогены); ориентанты второго рода направляют вступающие заместители в мета-положение (-NO2, -SO3Η, -СΗО, -СООΗ).

Ориентанты здесь указаны в порядке уменьшения направляющей силы.

Стоит отметить, что такое разделение заместителей группы является условным, из-за того, в большинстве реакций наблюдается образование всех трех изомеров. Ориентанты же влияют лишь на то, какой из изомеров будет получен в большем количестве.

Получение аренов

Основными источниками аренов являются сухая перегонка каменного угля и нефтепереработка. В каменноугольной смоле содержится огромное количество всевозможных ароматических углеводородов. В некоторых сортах нефти содержится до 60% аренов, которые несложно выделить простой перегонкой, пиролизом или крекингом.

Способы синтетического получения и химические свойства аренов зачастую бывают взаимосвязаны. Бензол, как и его гомологи, получают одним из следующих способов.

1. Риформинг нефтепродуктов. Дегидрирование алканов – важнейший промышленный способ синтеза бензола и многих его гомологов. Реакцию ведут при пропускании газов над нагретым катализатором (Pt, Cr2O3, оксиды Mo и V) при t = 350–450 оС:

С6Н14 -> С6Η6 + 4Η2.

2. Реакция Вюрца–Фиттига. Она осуществляется через стадию получения металлорганических соединений. В итоге реакции возможно получение нескольких продуктов.

3. Тримеризация ацетилена. Сам ацетилен, как и его гомологи способны образовывать арены при нагревании с катализатором:

3С2Η2 -> С6Η6.

4. Реакция Фриделя–Крафтса. Выше уже был рассмотрен в химических свойствах аренов способ получения и превращения гомологов бензола.

5. Получение из соответствующих солей. Бензол можно выделить при перегонке солей бензойной кислоты со щелочью:

C6Η5-COONa + NaOΗ -> C6Η6 + Na2CO3.

6. Восстановлением кетонов:

C6Η5–CO–CΗ3 + Zn + 2ΗCl -> C6Η5–CΗ2–CΗ3 + Η2O + ZnCl2;

CΗ3–C6Η5–CO–CΗ3+ NΗ2–NΗ2 -> CΗ3–C6Η5–CΗ2–CΗ3+ Η2O.

Применение аренов

Химические свойства и области применения аренов имеют прямую взаимосвязь, поскольку основная часть ароматических соединений идет для дальнейшего синтеза в химическом производстве, а не используется в готовом виде. Исключение составляют вещества, применяемые в качестве растворителей.

Бензол С6Η6 применяется по большей части в синтезе этилбензола, кумола и циклогексана. На его основе получают полупродукты для изготовления различных полимеров: каучуков, пластмасс, волокон, красителей, ПАВ, инсектицидов, лекарств.


Толуол С6Н5-СН3 используют при производстве красителей, лекарств и взрывчатых веществ.

Ксилолы С6Η4(СΗ3)2 в смешанном виде (технический ксилол) применяются в качестве растворителя или исходного препарата для синтеза органических веществ.

Изопропилбензол (или кумол) С6Η4-СΗ(СΗ3)2 является исходным реагентом для синтеза фенола и ацетона.

Винилбензол (стирол) C6Η5-CΗ=СΗ2 является сырьем для получения важнейшего полимерного материала – полистирола.

АРЕНЫ (ароматические углеводороды)

Арены или ароматические углеводороды – это соединения, молекулы которых содержат устойчивые циклические группы атомов (бензольные ядра) с замкнутой системой сопряженных связей.

Почему "Ароматические"? Т.к. некоторые из ряда веществ имеют приятный запах. Однако в настоящее время в понятие "ароматичность" вкладывается совершенно иной смысл.

Ароматичность молекулы означает ее повышенную устойчивость, обусловленную делокализацией π-электронов в циклической системе.

Критерии ароматичности аренов:

  1. Атомы углерода в sp 2 -гибридизованном состоянии образуют цикл.
  2. Атомы углерода располагаются в одной плоскости (цикл имеет плоское строение).
  3. Замкнутая система сопряженных связей содержит

    4n+2 π-электронов (n – целое число).


Этим критериям полностью соответствует молекула бензола С 6 Н 6 .

Понятие “бензольное кольцо ” требует расшифровки. Для этого необходимо рассмотреть строение молекулы бензола.

В се связи между атомами углерода в бензоле одинаковые (нет как таковых двойных и одинарных) и имеют длину 0,139нм. Эта величина является промежуточной между длиной одинарной связи в алканах (0,154нм) и длиной двойной связи в алкенах (0,133 им).

Равноценность связей принято изображать кружком внутри цикла

Круговое сопряжение дает выигрыш в энергии 150 кДж/моль. Эта величина составляет энергию сопряжения — количество энергии, которое нужно затратить, чтобы нарушить ароматическую систему бензола.

Общая фоормула: C n H 2n-6 (n ≥ 6)

Гомологический ряд:

Гомологи бензола – соединения, образованные заменой одного или нескольких атомов водорода в молекуле бензола на углеводородные радикалы (R):

орто - (о -) заместители у соседних атомов углерода кольца, т.е. 1,2-;
мета - (м -) заместители через один атом углерода (1,3-);
пара - (п -) заместители на противоположных сторонах кольца (1,4-).

арил

C 6 H 5 - (фенил ) и C 6 H Ароматические одновалентные радикалы имеют общее название "арил ". Из них наиболее распространены в номенклатуре органических соединений два:

C 6 H 5 - (фенил ) и C 6 H 5 CH 2 - (бензил ). 5 CH 2 - (бензил ).

Изомерия:

структурная:

1) положения заместителей для ди -, три - и тетра -замещенных бензолов (например, о -, м - и п -ксилолы);

2) углеродного скелета в боковой цепи, содержащей не менее 3-х атомов углерода:

3) изомерия заместителей R, начиная с R = С 2 Н 5 .

Химические свойства:

Для аренов более характерны реакции, идущие с сохранением ароматической системы , а именно, реакции замещения атомов водорода, связанных с циклом.

2. Нитрование

Бензол реагирует с нитрующей смесью (смесью концентрированныхазотной и серной кислот):

3. Алкилирование

Замещение атома водорода в бензольном кольце на алкильную группу(алкилирование ) происходит под действием алкилгалогенидов или алкенов в присутствии катализаторов AlCl 3 , AlBr 3 , FeCl 3 .



Замещение в алкилбензолах:

Гомологи бензола (алкилбензолы) более активно вступают в реакции замещения по сравнению с бензолом.

Например, при нитровании толуола С 6 Н 5 CH 3 может происходить замещение не одного, а трех атомов водорода с образованием 2,4,6-тринитротолуола:

и облегчает замещение именно в этих положениях.

С другой стороны, под влиянием бензольного кольца метильная группа СH 3 в толуоле становится более активной в реакциях окисления и радикального замещения по сравнению с метаном СH 4 .

Толуол, в отличие от метана, окисляется в мягких условиях (обесцвечивает подкисленный раствор KMnO 4 при нагревании):

Легче, чем в алканах, протекают реакции радикального замещения в боковой цепи алкилбензолов:

Это объясняется тем, что на лимитирующей стадии легко (при невысокой энергии активации) образуются устойчивые промежуточные радикалы. Например, в случае толуола образуется радикал бензил Ċ H 2 -C 6 H 5 . Он более стабилен, чем алкильные свободные радикалы (Ċ Н 3 , Ċ H 2 R), т.к. его неспаренный электрон делокализован за счет взаимодействия с π-электронной системой бензольного кольца:



Правила ориентации

  1. Заместители, имеющиеся в бензольном ядре, направляют вновь вступающую группу в определенные положения, т.е. оказывают ориентирующее действие.
  2. По своему направляющему действию все заместители делятся на две группы: ориентанты первого рода и ориентанты второго рода .

    Ориентанты 1-го рода (орто-пара -ориентанты) направляют последующее замещение преимущественно в орто - и пара -положения.

    К ним относятся электронодонорные группы (электронные эффекты групп указаны в скобках):

R (+I ); - OH (+M,-I ); - OR (+M,-I ); - NH 2 (+M,-I ); - NR 2 (+M,-I ) +M-эффект в этих группах сильнее, чем -I-эффект.

Ориентанты 1-го рода повышают электронную плотность в бензольном кольце, особенно на углеродных атомах в орто - и пара -положениях, что благоприятствует взаимодействию с электрофильными реагентами именно этих атомов.

Ориентанты 1-го рода, повышая электронную плотность в бензольном кольце, увеличивают его активность в реакциях электрофильного замещения по сравнению с незамещенным бензолом.

Особое место среди ориентантов 1-го рода занимают галогены, проявляющие электроноакцепторные свойства:

-F (+M<–I ), -Cl (+M<–I ), -Br (+M<–I ).

Являясь орто-пара -ориентантами, они замедляют электрофильное замещение. Причина - сильный –I -эффект электроотрицательных атомов галогенов, понижащий электронную плотность в кольце.

Ориентанты 2-го рода (мета -ориентанты) направляют последующее замещение преимущественно в мета -положение.
К ним относятся электроноакцепторные группы:

-NO 2 (–M, –I ); -COOH (–M, –I ); -CH=O (–M, –I ); -SO 3 H (–I ); -NH 3 + (–I ); -CCl 3 (–I ).

Ориентанты 2-го рода уменьшают электронную плотность в бензольном кольце, особенно в орто - и пара -положениях. Поэтому электрофил атакует атомы углерода не в этих положениях, а в мета -положении, где электронная плотность несколько выше.
Пример:

Все ориентанты 2-го рода, уменьшая в целом электронную плотность в бензольном кольце, снижают его активность в реакциях электрофильного замещения.

Таким образом, легкость электрофильного замещения для соединений (приведенных в качестве примеров) уменьшается в ряду:

толуол C 6 H 5 CH В отличие от бензола его гомологи окисляются довольно легко.

Ароматические химические соединения, или арены, представляют собой большую группу карбоциклических соединений, в молекулах которых содержится устойчивый цикл из шести углеродных атомов. Она носит название «бензольное кольцо» и обуславливает особые физические и химические свойства аренов.

К ароматическим углеводородам относится в первую очередь бензол и всевозможные его гомологи и производные.

В молекулах аренов может содержаться несколько бензольных колец. Такие соединения называют многоядерными ароматическими соединениями. Например, нафталин - всем известный препарат для защиты шерстяных изделий от моли.

Бензол

Этот простейший представитель аренов состоит только из бензольного кольца. Его молекулярная формула С 6 Η 6 . Структурную формулу молекулы бензола чаще всего представляют циклической формой, предложенной А. Кекуле в 1865 году.

Достоинством этой формулы является верное отражение состава и равноценности всех атомов С и Н в кольце. Однако она не могла объяснить многих химических свойств аренов, поэтому утверждение о наличии трех сопряженных двойных связей С=С является ошибочным. Это стало известно лишь с появлением современной теории связей.

Между тем и сегодня часто встречается написание формулы бензола способом, предложенным Кекуле. Во-первых, с ее помощью удобно записывать уравнения химических реакций. Во-вторых, современные химики видят в ней лишь символ, а не реальную структуру. Строение молекулы бензола сегодня передают различными типами структурных формул.

Строение бензольного кольца

Главной особенностью бензольного ядра можно назвать отсутствие в нем одинарных и двойных связей в традиционном понимании. В соответствии с современными представлениями молекула бензола представляется плоским шестиугольником с длинами сторон равными 0,140 нм. Получается, что длина связи С-С в бензоле является промежуточным значением между одинарной (ее длина 0,154 нм) и двойной (0,134 нм). В той же плоскости лежат и связи С-Н, образующие с ребрами шестиугольника угол в 120°.

Каждый атом С в структуре бензола находится в sp2-гибридном состоянии. Он соединен посредством трех своих гибридных орбиталей с двумя атомами С, расположенными по соседству, и одним атомом Н. То есть образует три s-связи. Еще одна, но уже негибридизованная его 2р-орбиталь, перекрывается с такими же орбиталями соседних атомов С (справа и слева). Ось ее перпендикулярна плоскости кольца, а значит перекрывание орбиталей происходит над и под ней. При этом образуется общая замкнутая π-электронная система. Из-за равнозначного перекрывания 2р-орбиталей шести атомов С происходит своего рода «уравнивание» связей С-С и С=С.

Результатом этого процесса является сходство таких «полуторных» связей и с двойными, и с одинарными. Этим объясняется тот факт, что проявляют арены химические свойства, характерные и для алканов, и для алкенов.

Энергия углерод-углеродной связи в бензольном кольце равняется 490 кДж/моль. Что также является также средней величиной между энергиями простой и кратной двойной связи.

Номенклатура аренов

Основой названий ароматических углеводородов является бензол. Атомы в кольце нумеруют со старшего заместителя. Если же заместители равнозначны, то нумерацию осуществляют по кратчайшему пути.

Для многих гомологов бензола часто используют тривиальные названия: стирол, толуол, ксилол и т. д. Для отражения взаимного расположения заместителей принято использовать приставки οртο-, мета-, пара-.

Если в молекуле имеются функциональные группы, например, карбонильная или карбоксильная, то молекулу арена рассматривают как соединенный с ней ароматический радикал. Например, -С 6 Η 5 - фенил, -C 6 Η 4 - фенилен, С 6 Η 5 —СΗ 2 — - бензил.

Физические свойства

Первые представители в гомологическом ряду бензола - это бесцветные жидкости, имеющие специфичес-кий запах. Их вес легче воды, в которой они практически не растворяются, но хорошо растворяются в большинстве органических растворителей.

Все ароматические углеводороды горят с появлением коптящего пламени, что объясняется высоким содержанием С в молекулах. Температуры плавления и кипения их повышаются с увеличением значений молекулярных масс в гомологическом ряду бензола.

Химические свойства бензола

Из разнообразных химических свойств аренов реакции замещения следует упомянуть отдельно. Также весьма значимы некоторые реакции присоединения, осуществляющиеся в особых условиях, и процессы окисления.

Реакции замещения

Довольно подвижные π-электроны бензольного кольца, способны очень активно реагировать с атакующими электрофилами. В таком электрофильном замещении участвует само бензольное ядро в бензоле и связанная с ним углеводородная цепь в его гомологах. Механизм этого процесса довольно подробно изучен органической химией. Химические свойства аренов, связанные с атакой электрофилов, проявляются посредством трех стадий.

  • Первая стадия. Появление π-комплекса из-за связывания π-электронной системы бензольного ядра с частицей Х + , которая связывается с шестью π-электронами.

Бромирование бензола в присутствии бромидов железа или алюминия без нагревания приводит к получению бромбензола:

C 6 Η 6 + Br 2 —> C 6 Η 5 -Br + ΗBr.

Нитрование смесью азотной и серной кислот приводит к получению соединений с нитрогруппой в кольце:

C 6 Η 6 + ΗONO 2 —> C 6 Η 5 —NO 2 + Η 2 O.

Сульфирование осуществляется бисульфониевым ионом, образующимся в результате реакции:

3Η 2 SO 4 ⇄ SO 3 Η + + Η 3 O + + 2ΗSO 4 - ,

или триоксид серы.

Соответствует данному химическому свойству аренов реакция:

C 6 H 6 + SO 3 H + —> C 6 H 5 —SO 3 H + H + .

Реакции алкильного и ацильного замещения, или реакции Фриделя-Крафтса, проводят в присутствии безводного AlCl 3 .

Эти реакции маловероятны для бензола и протекают с трудом. Присоединение галогеноводородов и воды к бензолу не происходит. Однако при очень высоких температурах в присутствии платины возможна реакция гидрирования:

С 6 Η 6 + 3Н 2 —> С 6 Н 12 .

При облучении ультрафиолетом к молекуле бензола могут присоединиться молекулы хлора:

С 6 Η 6 + 3Cl 2 —> C 6 Η 6 Cl 6 .

Реакции окисления

Бензол весьма устойчив к окислителям. Так, он не обесцвечивает розовый раствор перманганата калия. Однако в присутствии оксида ванадия он может окисляться кислородом воздуха до малеиновой кислоты:

С 6 Н 6 + 4О —> СООΗ-СΗ=СΗ-СООΗ.

На воздухе бензол горит с появлением копоти:

2C 6 Η 6 + 3O2 → 12C + 6Η 2 O.

Химические свойства аренов

  1. Замещение.

Правила ориентации

Какое именно положение (о-, м- или п-) займет заместитель в ходе взаимодействия электрофильного агента с бензольным кольцом определяется правилами:

  • если в бензольном ядре уже имеется какой-либо заместитель, то именно он направляет входящую группу в определенное положение;
  • все ориентирующие заместители делят на две группы: ориентанты первого рода направляют поступающую группу атомов в орто- и пара-положения (—NΗ 2 , —ОΗ,—СΗ 3 , —С 2 Н 5 , галогены); ориентанты второго рода направляют вступающие заместители в мета-положение (—NO 2 , —SO 3 Η, —СΗО, —СООΗ).

Ориентанты здесь указаны в порядке уменьшения направляющей силы.

Стоит отметить, что такое разделение заместителей группы является условным, из-за того, в большинстве реакций наблюдается образование всех трех изомеров. Ориентанты же влияют лишь на то, какой из изомеров будет получен в большем количестве.

Получение аренов

Основными источниками аренов являются сухая перегонка каменного угля и нефтепереработка. В каменноугольной смоле содержится огромное количество всевозможных ароматических углеводородов. В некоторых сортах нефти содержится до 60% аренов, которые несложно выделить простой перегонкой, пиролизом или крекингом.

Способы синтетического получения и химические свойства аренов зачастую бывают взаимосвязаны. Бензол, как и его гомологи, получают одним из следующих способов.

1. Риформинг нефтепродуктов. Дегидрирование алканов - важнейший промышленный способ синтеза бензола и многих его гомологов. Реакцию ведут при пропускании газов над нагретым катализатором (Pt, Cr 2 O 3 , оксиды Mo и V) при t = 350-450 о С:

С 6 Н 14 —> С 6 Η 6 + 4Η 2 .

2. Реакция Вюрца-Фиттига. Она осуществляется через стадию получения металлорганических соединений. В итоге реакции возможно получение нескольких продуктов.

3. Тримеризация ацетилена. Сам ацетилен, как и его гомологи способны образовывать арены при нагревании с катализатором:

3С 2 Η 2 —> С 6 Η 6 .

4. Реакция Фриделя-Крафтса. Выше уже был рассмотрен в химических свойствах аренов способ получения и превращения гомологов бензола.

5. Получение из соответствующих солей. Бензол можно выделить при перегонке солей бензойной кислоты со щелочью:

C 6 Η 5 —COONa + NaOΗ —> C 6 Η 6 + Na 2 CO 3 .

6. Восстановлением кетонов:

C 6 Η 5 -CO-CΗ 3 + Zn + 2ΗCl —> C 6 Η 5 -CΗ 2 -CΗ 3 + Η 2 O + ZnCl 2 ;

CΗ 3 -C 6 Η 5 -CO-CΗ 3 + NΗ 2 -NΗ 2 —> CΗ 3 -C 6 Η 5 -CΗ 2 -CΗ 3 + Η 2 O.

Применение аренов

Химические свойства и области применения аренов имеют прямую взаимосвязь, поскольку основная часть ароматических соединений идет для дальнейшего синтеза в химическом производстве, а не используется в готовом виде. Исключение составляют вещества, применяемые в качестве растворителей.

Бензол С 6 Η 6 применяется по большей части в синтезе этилбензола, кумола и циклогексана. На его основе получают полупродукты для изготовления различных полимеров: каучуков, пластмасс, волокон, красителей, ПАВ, инсектицидов, лекарств.

Толуол С 6 Н 5 -СН 3 используют при производстве красителей, лекарств и взрывчатых веществ.

Ксилолы С 6 Η 4 (СΗ 3) 2 в смешанном виде (технический ксилол) применяются в качестве растворителя или исходного препарата для синтеза органических веществ.

Изопропилбензол (или кумол) С 6 Η 4 -СΗ(СΗ 3) 2 является исходным реагентом для синтеза фенола и ацетона.

Винилбензол (стирол) C 6 Η 5 -CΗ=СΗ 2 является сырьем для получения важнейшего полимерного материала - полистирола.

1. Классификация ароматических углеводородов.

2. Гомологический ряд моноциклических аренов, номенклатура, получение.

3. Изомерия, строение бензола и его гомологов.

4. Свойства аренов.

Аренами называют богатые углеродом циклические углеводороды, которые содержат в молекуле бензольное ядро и обладают особыми физическими и химическими свойствами. Арены по числу бензольных колец в молекуле и способа соединения циклов подразделяют на моноциклические (бензол и его гомологи) и полициклические (с конденсированными и изолированными циклами) соединения.

Арены бензольного ряда можно рассматривать как продукты замещения атомов водорода в молекуле бензола на алкильные радикалы. Общая формула таких аренов СnH 2 n- 6. В названии монозамещенных аренов указывают название радикала и цикла (бензол):

бензол метилбензол (толуол) этилбензол.

В более замещенных аренах положение радикалов указывают наименьшими цифрами, в дизамещенных аренах положение радикалов называют: 1,2 - орто (o -)-, 1,3 - мета (м -)- и 1,4 - пара (п -)-:

1,3-диметилбензол 1,2-метилэтилбензол

м -диметилбензол (м -ксилол) о -метилэтилбензол (о -ксилол)

Для аренов широко распространены тривиальные названия (некоторые названия указаны в скобках).

Нахождение в природе.

Ароматические углеводороды встречаются в растительных смолах и бальзамах. Фенантрен в частично или полностью гидрированном виде содержится в структурах многих природных соединений, например стероидов, алкалоидов.

Получение аренов:

1. сухая перегонка каменного угля;

2. дегидрирование циклоалканов

3. дегидроциклизация алканов с 6 и более атомами углерода в составе

4. алкилирование

Изомерия. Для гомологов бензола характерна структурная изомерия: различное строение углеродного скелета бокового радикала и различные состав и расположение радикалов в бензольном кольце. Например, изомеры ароматических углеводородов состава С 9 Н 12 (пропилбензол, изопропилбензол, о-метилэтилбензол и 1,2,4-триметилбензол):

Строение. Ароматические углеводороды имеют целый ряд особенностей в электронном строении молекул.

Структурную формулу бензола впервые предложил А. Кекуле. Это шестичленный цикл с чередующимися двойными и одинарными связями, при этом двойные связи перемещаются в структуре:

В обеих формулах углерод четырехвалентен, все атомы углерода равноценны и дизамещенные бензола существуют в виде трех изомеров (орто -, мета -, пара- ). Однако такая структура бензола противоречила его свойствам: бензол не вступал в характерные для непредельных углеводородов реакции присоединения (например, брома) и окисления (например, с перманганатом калия), для него и его гомологов основной тип химического превращения - реакции замещения.

Современный подход к описанию электронного строения бензола разрешает это противоречие следующим образом. Атомы углерода в молекуле бензола находятся в sр 2 -гибридизации. Каждый из атомов углерода образует три ковалентные σ-связи - 2 связи с соседними атомами углерода (sр 2 -sр 2 -перекрывание орбиталей) и одну с атомом водорода (sр 2 -s- перекрывание орбиталей). Негибридизованные р-орбитали за счет бокового перекрывания образуют π-электронную сопряженную систему (π,π-сопряжение), содержащую шесть электронов. Бензол представляет собой плоский правильный шестиугольник с длиной связи углерод-углерод 0,14нм, связи углерод-водород 0,11нм, валентными углами 120 0:

Молекула бензола стабильнее циклических соединений с изолированными двойными связями, поэтому бензол и его гомологи склонны к реакциям замещения (бензольное кольцо сохраняется), а не присоединения и окисления.

Сходство в строении и свойствах (ароматичность) с бензолом проявляют и другие циклические соединения. Критерии ароматичности (Э. Хюккель, 1931г.):

а) плоская циклическая структура, т.е. атомы, образующие цикл, находятся в sр 2 -гибридизации; б) сопряженная электронная система; в) число электронов (N) в кольце равно 4n+2, где n - любое целочисленное значение - 0,1,2,3 и т.д.

Критерии ароматичности применимы как к нейтральным, так и заряженным циклическим сопряженным соединениям, поэтому ароматическими соединениями будут, например:

фуран катион циклопропенила.

Для бензола и других ароматических соединений наиболее характерны реакции замещения атомов водорода при углеродных атомах в цикле и менее характерны реакции присоединения по π-связи в цикле.

Физические свойства.

Бензол и его гомологи являются бесцветными жидкостями и кристаллическими веществами со своеобразным запахом. Они легче воды и плохо в ней растворяются. Бензол неполярное соединение(μ=0), алкилбензолы -

полярные соединения(μ≠0).

Химические свойства.

Электрофильное замещение. Наиболее характерным превращением для аренов является электрофильное замещение - S Е. Реакция протекает в две стадии с образованием промежуточного σ-комплекса:

Условиях реакции: температура 60-80 0 С, катализаторы - кислоты Льюса или минеральные кислоты.

Типичные S Е - реакции:

а) галогенирование (Cl 2 , Br 2):

б) нитрование:

в ) сульфирование (H 2 SO 4 , SO 3 , олеум):

г) алкилирование по Фриделю-Крафтсу (1877г.) (RНal, ROH, алкены):

д) алкилирование по Фриделю-Крафтсу (галогенангидриды, ангидриды карбоновых кислот):

У гомологов бензола в результате влияния бокового радикала (+I-эффект, электронодонорная группа) π-электронная плотность бензольного кольца распределена неравномерно, увеличиваясь в 2,4,6-положениях. Поэтому S Е -реакции протекают направлено (в 2,4,6- или о- и п- положения). Гомологи бензола по сравнению с бензолом в реакциях этого типа проявляют большую реакционная активность.

толуол п -хлортолуол о -хлортолуол

Реакции боковых радикалов в алкилбензолах (радикальное замещение - S R и окисление).

Реакции радикального замещения протекают, как и в предельных углеводородах, по цепному механизму и включают стадии инициирования, роста и обрыва цепи. Реакция хлорирования протекает ненаправлено, реакция бромирования региоселективна - замещение водорода происходит уα-углеродного атома.

В алкилбензолах боковая цепь окисляется перманганатом калия, бихроматом калия с образованием карбоновых кислот. Независимо от длины боковой цепи, окисляется атом углерода, связанный с бензольным ядром (α-углеродный или бензильный атом углерода), остальные атомы углерода окисляются до СО 2 или карбоновых кислот.

этилбензол бензойная кислота

п -метилэтилбензол терефталевая кислота

Реакции бензола с нарушением ароматической системы.

Ароматические углеводороды имеют прочный цикл, поэтому реакции с нарушением ароматической системы (окисление, радикальное присоединение) протекают в жестких условиях (высокие температуры, сильные окислители).

а) радикальное присоединение:

1. гидрирование

толуол циклогексан

2. хлорирование

бензол 1,2,3,4,5,6-гексахлорциклогексан (гексахлоран).

Продукт этой реакции представляет смесь пространственных изомеров.

Ориентация электрофильного замещения в ароматических соединениях. Заместители в бензольном кольце по своему ориентирующему влиянию делятся на два типа: орто -, пара -ориентанты (заместители 1 рода) и мета -ориентанты (заместители 2 рода).

Заместители 1 рода - это электронодонорные группы, которые повышают электронную плотность кольца, увеличивают скорость реакции электрофильного замещения и активируют бензольное кольцо в этих реакциях:

D(+I-эффект): - R, -СН 2 ОН, -СН 2 NН 2 и т.д.

D(-I,+М-эффекты): -NH 2 ,-OH, -OR, -NR 2 , -SH и т.д.

Заместители 2 рода – электроноакцепторные группы, которые понижают электронную плотность кольца, уменьшают скорость реакции электрофильного замещения и дезактивируют бензольное кольцо в этих реакциях:

А (-I-эффект): -SO 3 H, -CF 3 , -CСl 3 и т.д.

А (-I, -М -эффект): -НС=О, -СООН, -NO 2 и т. д.

Атомы галогенов занимают промежуточное положение - они понижают электронную плотность кольца, уменьшают скорость реакции электрофильного замещения и дезактивируют бензольное кольцо в этих реакциях, однако это о -,п -ориентанты.

Если в бензольном кольце находится два заместителя, то их ориентирующее действие может совпадать (согласованная ориентация ) или не совпадать (несогласованная ориентация ). В реакциях электрофильного замещения соединения с согласованной ориентацией образуют меньшее количество изомеров, во втором случае образуется смесь из большего числа изомеров. Например:

п - гидроксибензойная кислота м - гидроксибензойная кислота

(согласованная ориентация) (несогласованная ориентация)

Полициклические конденсированные ароматические углеводороды (нафталин, антрацен, фенантрен и т.д.), в основном, по свойствам похожи на бензол, но вместе с тем имеют некоторые отличия.

Применение:

1. ароматические углеводороды - сырье для синтеза красителей, взрывчатых веществ, лекарственных препаратов, полимеров, поверхностно-активных веществ, карбоновых кислот, аминов;

2. жидкие ароматические углеводороды хорошие растворители органических соединений;

3. арены - добавки для получения высокооктановых бензинов.

Знаете ли вы, что -В 1649 году немецкий химик Иоганн Глаубер впервые получил бензол.

В 1825 году М. Фарадей выделил из светильного газа углеводород и установил его состав - С 6 Н 6 .

В 1830 году Юстус Либих назвал полученное соединение бензолом (от араб. Вen-аромат + zoa-сок + лат. ol-масло).

В1837 году Огюстом Лораном назван радикал бензола С 6 Н 5 - фенил (от греч phenix-освещать).

В 1865 году немецкий химик-органик Фридрих Август Кекуле предложил формулу бензола с чередующимися двойными и одинарными связями в шестичленном цикле.

В 1865-70-х годах В. Кернер предложил использовать приставки для обозначения взаимного расположения двух заместителей: 1,2 положение - орто- (orthos - прямой);1,3- мета (meta - после) и 1,4- пара (para - напротив).

Ароматические углеводороды - высокотоксичные вещества, вызывают отравление и поражение некоторых органов, например почек, печени.

Некоторые ароматические углеводороды - канцерогены (вещества, вызывающие раковые заболевания), например бензол (вызывает лейкемию), один из сильнейших - бензопирен (содержится в табачном дыме).



Что еще почитать