Главный комплекс гистосовместимости, его основные биологические функции. Главный комплекс гистосовместимости человека (HLA) Главный ген гистосовместимости у человека обозначают

Для реализации корректного иммунного ответа необходимо отличать «свое» от «чужого». Это свойство связано с системой генов, которые детерминируют синтез специфических для каждого организма молекул. Такие молекулы были открыты в конце 50-х годов прошлого века французским исследователем Жаном Доссе благодаря их способности вызывать реакцию отторжения трансплантата при пересадке ткани в пределах одного вида животных. Поэтому они были на-званы антигенами гистосовместимости, или трансплантационными антигенами. Поскольку у человека такие молекулы были впервые выявлены на лейкоцитах крови , система человеческих антигенов гистосовместимости получила название лейкоцитарных антигенов человека (Human Leukocyte Antigens), сокращенно — HLA. Соответствующий участок на 6-й хромосоме, где расположены гены, ко-дирующие антигены гистосовместимости, называется HLA-комплексом. У всех млекопитающих главный комплекс гистосовместимости называется MHC (англ. — Major Histocompatibility Complex).

Различают три класса генов главного комплекса гистосовместимости (рис. 25). Антигены HLA I и II классов отличаются по структуре., но в дальнейшем имеют разную судьбу.

I класс HLA

I класс включает локусы А, В, С, Е, О, F. Локусы А, В и С называются «клас-сическими», поскольку кодируют хорошо изученные антигены гистосовместимости. Классические антигены I класса размещены на поверхности всех клеток организма, кроме нитей трофобласта. Именно они свидетельствуют об организменной принадлежности клеток. Для генов I класса присущ огромный поли-морфизм. Так, локус А содержит 40 аллелей, В — 60 аллелей, а С — около 20. С этим связана беспрецедентная уникальность набора HLA у каждого человека.

Роль антигенов I класса, которые кодируются локусами Е, G и F, полностью не изучена. Известно, что на клетках трофобласта присутствуют молекулы, ко-дируемые только локусом G. Это считается одним из механизмов поддержания иммунной толерантности организма матери к антигенам фетоплацентарного комплекса.

Структура

Молекулы 1 класса состоят из одной тяжелой пели, которая содержит 3 до-мена, и одной легкой, образованной лишь одним доменом. При этом только тяжелая цепь имеет цитоплазматический участок и формирует пептидсвязывающую бороздку.

Синтез

Молекулы HLA I класса синтезируются на гранулярном эндоплазма-тическом ретикулуме.

HLA 1 поступа-ют в протеосомы, где пептиды, сформированные за счет деятельности LMP, загружаются в их пептидсвязывающую борозду молекулами-транспортерами (ТАР). После этого комплекс HLA-пептид по внутриклеточным коммуника-циям поступает в комплекс Гольджи и в везикулах, которые отшнуровываются от этой органеллы, перемещается в сторону внешней плазматической мемб-раны. Содержимое везикулы высвобождается наружу (экзоцитоз), а фрагмент мембраны, в который встроены новообразованные HLA I, входит в состав цитолеммы. Следует отметить, что пептиды для молекул гистосовместимости I класса всегда есть в наличии, поскольку формируются они из аутоантигенов, часть которых расщепляется LMP еще до начала выполнения своих функцио-нальных обязанностей в клетке.

II класс HLA

II класс содержит «классические» локусы DR, DQ, DP, кодирующие синтез соответствующих по названию молекул. Обычно антигены II класса находят-ся только на мембранах профессиональных антигенпрезентирующих клеток, к которым принадлежат дендритные клетки , макрофаги и В-лимфоциты. Но под влиянием интерлейкина-2 и γ-интерферона они могут дополнительно по-являться и на других клетках (в частности, на Т-лимфоцит ах и клетках эндотелия сосудов). Антигены II класса также довольно полиморфны, особенно кодируемые локусом DR. Кроме перечисленных «классических» локусов, ге-ны II класса включают еще 3 других — LMP (Large multifunctional proteasa, большая многофункциональная протеаза), ТАР (Transporter for antigen presentation, транспортер для антигенной презентации; и локус DM. Локусы LMP кодируют протеазы, осуществляющие «разрезание» макромолекулы антигена и опреде-ляющие тем самым размер образованных иммуногенных пептидов. Локус ТАР обеспечивает синтез транспортных белков, которые осуществляют доставку и «загрузку» таких иммуногенных пептидов в пептидсвязывающую бороздку молекулы HLA (в так называемый карман Беркмана). Интересно, что оба гена обслуживают синтез молекул HLA 1 класса. Локус DM кодирует синтез бел-ков, катализирующих замену «временного пептида» на специфический пептид, загружаемый в пептидсвязывающую бороздку HLA II класса в случае захвата антигенпрезентирующей клеткой антигена.

Структура

HLA II класса формируют две одинаковые по молекулярной массе цепи, каждая из которых имеет контакт с цитоплазмой и принимает учас-тие в формировании общей пептидсвязывающей борозды.

Синтез

Молекулы HLA II класса синтезируются на гранулярном эндоплазма-тическом ретикулуме.

Молекулы HLA II синтезируются в комплексе с так называемой инвариант-ной цепью, которая образует «временный пептид» (без пептида любая молеку-ла гистосовместимости нежизнеспособна). В дальнейшем образованный ком-плекс поступает в лизосомы, где разрушается гидролитическими ферментами, а сформированные мономеры используются для повторного синтеза HLA II. Так происходит до тех пор, пока антигенпрезентирующая клетка (АПК) не за-хватит антиген. В таком случае образуется фаголизосома и именно сюда пос-тупает комплекс HLA II — временный пептид. Под влиянием активированных белков DM временный пептид оставляет молекулу гистосовместимости, а на его место загружается иммуногенный пептид, образованный путем процес-синга захваченного антигена. В дальнейшем фрагменты разрушенного антиге-на удаляются из клетки путем экзоцитоза. При этом мембрана экзоцитарной вакуоли, в которую встроены комплексы HLA II — иммуногенный пептид, сливается с цитолеммой и указанные комплексы оказываются на поверхности клетки. В таком состоянии АПК готова к осуществлению антигенной презен-тации. Материал с сайта

Описанные постоянное разрушение и ресинтез молекул HLA II класса про-исходят в дендритных клетках. Хотя последние тратят энергию на, казалось бы, бессмысленную рециркуляцию HLA, они в любой момент времени пребывают в полной готовности к презентации антигена . Учитывая это, дендритные клет-ки можно сравнить с автомобилем с включенным мотором — следует лишь нажать на газ и он сразу же тронется. Макрофаги, в отличие от дендритных клеток, начинают синтез HLA II только после фагоцитоза объекта, поэто-му они более медленно включаются в процесс антигенной презентации. Сэкономленную энергию макрофаг использует для синтеза целого ряда белков, необходимых для выполнения эффекторных функций. Напомним, что макро-фаги совмещают функции антигенпрезентирующей клетки, фагоцита и клет-ки-эффектора в реакциях антителозависимой клеточно-опосредованной цито-токсичности.

Чарлз Б. Карпентер (Charles В. Carpenter)

Антигены, обеспечивающие внутривидовые различия особей, обозначаются как аллоантигены, а когда они включаются в процесс отторжения аллогенных тканевых трансплантатов, то приобретают название антигенов тканевой совместимости (гистосовместимости). Эволюция закрепила единичный участок тесно сцепленных генов гистосовместимости, продукты которых на поверхности клеток обеспечивают сильный барьер при аллотрансплантации. Термины «major histocompatibility antigens» (главные антигены гистосовместимости) и «major histocompatibility gene complex» (MHC) (главный генный комплекс гистосовместимости) относятся соответственно к продуктам генов и генам этого хромосомного участка. Многочисленные минорные антигены гистосовместимости, наоборот, кодируются множественными участками генома. Им соответствуют более слабые аллоантигенные различия молекул, выполняющих разнообразные функции. Структуры, несущие детерминанты MHC, играют значительную роль в иммунитете и самораспознавании в процессе дифференцировки клеток и тканей. Информация о МНС-контроле иммунного ответа получена в опытах на животных, когда гены иммунного ответа были картированы внутри MHC-у мышей (Н-2), крыс (RT1), морских свинок (GPLA). У человека MHC назван HLA. Отдельным буквам аббревиатуры HLA придается различное значение, и с международного согласия HLA служит для обозначения человеческого МНС-комплекса.

Относительно MHC можно сделать несколько обобщений. Во-первых, в малом участке (менее 2 сантиморган) MHC кодируется три класса генных продуктов. Молекулы класса I, экспрессируемые практически всеми клетками, содержат одну тяжелую и одну легкую полипептидную цепи и являются продуктами трех редуплицированных локусов-HLA-A, HLA-B и HLA-C. Молекулы класса II, экспрессия которых ограничивается В-лимфоцитами, моноцитами и активированными Т-лимфоцитами, содержат две полипептидные цепи (? и?) неравной величины и являются продуктами нескольких тесно сцепленных генов, в сумме обозначаемых как зона HLA-D. Молекулы класса III представляют собой компоненты комплемента С4, С2 и Bf. Во-вторых, молекулы классов I и II образуют комплекс с псевдоантигеном, или антиген гистосовместимости и псевдоантиген слитно распознаются Т-лимфоцитами, имеющими соответствующий рецептор для антигена. Распознавание своего и несвоего при запуске и в эффекторной фазе иммунного ответа непосредственно направляется молекулами I и II классов. В-третьих, четких ограничений межклеточных взаимодействий, в которых участвуют супрессорные Т-лимфоциты, у человека не выявлено, но роль генов HLA достаточно важна для некоторых проявлений супрессорной Т-клеточной активности. В-четвертых, в МНС-регионе локализуются гены ферментных систем, не имеющих непосредственного отношения к иммунитету, но важных для роста и развития скелета. Известные локусы HLA на коротком плече 6-й хромосомы представлены на рис. 63-1.

Локусы системы HLA. Антигены класса I. HLA-антигены I класса определяются серологически с помощью человеческих сывороток, главным образом от многорожавших женщин, и в меньшей степени с помощью моноклональных антител. Антигены I класса присутствуют с разной плотностью во многих тканях организма, включая В-клетки, Т-клетки, тромбоциты, но не на зрелых эритроцитах. Количество серологически выявляемых специфичностей велико, и система HLA является наиболее полиморфной из известных генетических систем человека. Внутри HLA-комплекса для серологически выявимых HLA антигенов I класса четко определяются три локуса. Каждый антиген 1 класса содержит?2-микроглобулиновую субъединицу (мол. масса 11500) и тяжелую цепь (мол. масса 44000), несущую антигенную специфичность (рис. 63-2). Существует 70 четко определенных А- и В-специфичностей и восемь специфичностей локуса С. Обозначение HLA обычно присутствует в наименовании антигенов главного комплекса гистосовместимости, но может не употребляться, когда позволяет контекст. Антигены, неокончательно классифицированные ВОЗ, имеют в обозначении букву w после названия локуса. Номер, следующий за обозначением локуса, служит собственным названием антигена. HLA-антигены населения Африки, Азии и Океании в настоящее время недостаточно четко определены, хотя они включают часть общих антигенов, свойственных лицам западноевропейского происхождения. Распределение HLA-антигенов различно в разных расовых группах, и они могут быть использованы как антропологические маркеры в изучении заболеваний и миграционных процессов.

Рис. 63-1. Схематическое изображение хромосомы 6.

Показана локализация зоны HLA в регионе 21 короткого плеча. Локусы HLA-A, HLA-B и HLA-C кодируют тяжелые цепи класса I (44000), тогда как?2-микроглобулиновая легкая цепь (11500) молекул класса I кодируется геном хромосомы 15. Зона HLA-D (класс II) расположена центромерно по отношению к локусам А, В и С с тесно сцепленными генами компонентов комплемента С4А, С4В, Bf и С2 на участке B-D. Порядок расположения генов комплемента не установлен. Каждая молекула класса II D-региона образована?- и?-цепями. Они присутствуют на клеточной поверхности в разных участках (DP, DQ и DR). Цифра, предшествующая знакам? и?, означает, что существуют различные гены для цепей данного типа, например, для DR существует три гена?-цепей, так что экспрессируемые молекулы могут быть 1??, 2?? или 3??. Антигены DRw52(MT2) и DRw53(MT3) находятся на 2?-цепи, тогда как DR - на l?-цепи. DR неполиморфен, а молекулы DQ-антигенов полиморфны как по?-, так и по?-цепям (2?2?). Другие типы DQ (1?1?) имеют ограниченный полиморфизм. Полиморфизм DP связан с?-цепями. Общая протяженность HLA-региона- около 3 сМ.

Поскольку хромосомы парны, каждый индивид имеет до шести серологически определимых антигенов HLA-A, HLA-B и HLA-C, по три от каждого из родителей. Каждый из этих наборов обозначается как гаплотип, и в соответствии с простым менделевским наследованием четвертая часть потомства имеет идентичные гаплотипы, половина - часть общих гаплотипов и оставшаяся четверть - полностью несовместима (рис. 63-3). Значение роли этого генного комплекса в трансплантационном ответе подтверждается тем, что подбор по гаплотипу пар донор - реципиент среди потомства одного поколения обеспечивает наилучшие результаты при трансплантации почек - около 85-90% длительного выживания (см. гл. 221).

Антигены класса II. Зона HLA-D примыкает к локусам класса I на коротком плече 6-й хромосомы (см. рис. 63-1). Этот регион кодирует серию молекул класса II, каждая из которых содержит?-цепь (мол, масса 29000) и?-цепь (мол. масса 34000) (см. рис. 63-2). Несовместимость по этому региону, особенно по антигенам DR, определяет пролиферативную реакцию лимфоцитов in vitro. Смешанная лимфоцитарная реакция (MLR) оценивается по уровню пролиферации в смешанной культуре лимфоцитов (MLC) и может быть положительной даже при идентичности по антигенам HLA-A, HLA-B и HLA-C (см. рис. 63-3). Антигены HLA-D определяются с помощью стандартных стимулирующих лимфоцитов, гомозиготных по HLA-D и инактивированных рентгеновскими лучами или митомицином С с целью придания реакции однонаправленности. Существует 19 таких антигенов (HLA-Dwl-19), обнаруженных с использованием гомозиготных типирующих клеток.

Попытки определения HLA-D серологическими методами сначала позволили обнаружить серию D-связанных (DR) антигенов, экспрессированных на молекулах класса II В-лимфоцнтов, моноцитов и активированных Т-лимфоцитов. Затем были описаны и другие тесно сцепленные антигенные системы, которые получили различные наименования (MB, MT, DC, SB). Идентичность отдельных групп молекул класса II сейчас установлена, и гены соответствующих?- и?-цепей выделены и секвенированы. Генная карта класса II, представленная на рис. 63-1, отражает минимальное число генов и молекулярных участков. Хотя молекула масса II может содержать DR? из гаплотипа одного из родителей, a DR?- другого (транскомплементация), комбинаторика вне каждого из участков DP, DQ, DR редка, если вообще возможна. Молекулы DR и в определенной степени DQ могут служить стимулами для первичной MLR. Вторичная MLR определяется как тест с примированными лимфоцитами (PLT) и дает возможность получить результат через 24-36 ч вместо 6-7 дней для первичной реакции. Аллоантигены DP были открыты благодаря их способности вызывать стимуляцию PLT, хотя они не дают первичной MLR. Хотя В-лимфоциты и активированные Т-лимфоциты экспрессируют все три набора молекул класса II, антигены DQ не экспрессируются на 60-90% DP- и DR-позитивных моноцитов.

Рис. 63-2. Схематическое изображение молекул клеточной поверхности классов I и II.

Молекулы класса I состоят из двух полипептидных цепей. Тяжелая цепь с мол. массой 44 000 проходит сквозь плазматическую мембрану; ее наружный участок состоит из трех доменов (?1, ?2 и?3), формируемых дисульфидными связями. Легкая цепь с мол. массой 11500 (?2-микроглобулин, ?2мю) кодируется хромосомой 15 и нековалентно связана с тяжелой цепью. Аминокислотная гомология между молекулами I класса составляет 80-85%, снижаясь до 50% в участках?1 и?2, которые, вероятно, соответствуют участкам аллоантигенного полиморфизма. Молекулы класса II образованы двумя нековалентно связанными полипсптидными цепями, ?-цепь с мол. массой 34000 и?-цепь с мол массой 29000. Каждая цепь содержит два домена, сформированных дисульфидными связями (из С. Б. Carpenter, E. L. Milford, Renal Transplantation: Immunobiology in the Kidnev/Eds. B. Brenner, F. Rector, New York: Samiders, 1985).

Рис. 63-3. HLA-зона хромосомы 6: наследование HLA-гаплотипов. Каждый хромосомный сегмент сцепленных генов обозначается как гаплотип, и каждый индивид наследует по одному гаплотипу от каждого родителя. На диаграмме представлены антигены А, В и С гаплотипов а и b для данного гипотетического индивида; ниже раскрыты обозначения гаплотипов в соответствии с текстом. Если мужчина с гаплотипом ab женится на женщине с гаплотипом cd, потомки могут быть только четырех типов (с точки зрения HLA). Если в мейозе у одного из родителей происходит рекомбинация (отмечена прерывистыми линиями), то это приводит к формированию измененного гап-лотнпа. Частота измененных гаплотипов у детей служит мерой расстояний на генетической карге (1% частота рекомбинаций== 1 сМ; см. рис. 63-1) (из Г.. В. Carpenter. Kidney International, Г)78. 14. 283).

Молекулярная генетика. Каждая полипептидная цепь молекул классов I и II содержит несколько полиморфных участков в дополнение к «частной» антигенной детерминанте, определяемой с помощью антисывороток. В тесте клеточно-опосредованного лимфолиза (CML) определяется специфичность киллерных Т-клеток (Тк), которые возникают в процессе пролиферации при MLR, путем тестирования на клетках-мишенях от доноров, не служивших источником стимулирующих клеток для MLR. Антигенные системы, определяемые этим методом, обнаруживают тесную, но неполную корреляцию с «частными» антигенами класса 1. Клонирование циготоксических клеток позволило обнаружить набор полиморфных детерминант-мишеней на молекулах HLA, некоторые из которых невозможно выявить с помощью аллоантисывороток и моноклональных антител, полученных иммунизацией мышей человеческими клетками. Некоторые из этих реагентов могут быть использованы для идентификации «частных» детерминант HLA, в то время как другие направлены к более «общим» (иногда называемым супертипируемыми) детерминантам. Одна такая система «общих» HLA-B антигенов имеет два аллеля, Bw4 и Bw6. Большинство «частных» HLA-B связаны или с Bw4, или с Bw6. Другие системы сопряжены с подгруппами HLA антигенов. Например, HLA-B-позитивные тяжелые цепи содержат дополнительные участки, общие для В7, В27, Bw22 и В40 или для В5, В15, В18 и Bw35. Существуют и другие типы перекрывающихся антигенных детерминант, о чем свидетельствует реакция моноклональных антител с участком, общим для тяжелых цепей HLA-A и HLA-B. Изучение аминокислотной последовательности и псптидных карт некоторых молекул HLA показало, что гипервариабельные участки антигенов класса I сосредоточены в наружном?1-домене (см. рис. 63-2) и прилегающем участке?2-домена. Вариабельные последовательности молекул класса II различны для разных локусов. Замечательно, что?3-домен класса I, ?2-домен класса II и?2-домен, а также часть мембранной молекулы Т8 (Leu 2), участвующей в межклеточных взаимодействиях (см. гл. 62), обнаруживают значительную гомологию последовательности аминокислот с константными зонами иммуноглобулинов. Это подтверждает гипотезу об эволюционном формировании семейства генных продуктов, которые несут функции иммунологичсского распознавания. При исследовании геномной ДНК HLA для молекул классов I и II были обнаружены типичные экзон-интронные последовательности, причем экзоны были идентифицированы для сигнальных пептидов (5") каждого из доменов, трансмембранного гидрофобного сегмента и цитоплазматического сегмента (З"). Имеются пробы кДНК для большинства цепей HLA, а применение ферментативных гидролизатов для оценки состояния полиморфизма рестрикционных фрагментов по длине (ПДРФ), позволило получить данные, которые коррелируют с результатами изучения молекул класса 11 серологическими методами в MLR. Однако многочисленность (20-30) генов класса 1 делает оценку полиморфизма по ПДРФ затруднительной. Многие из этих генов не экспрессируются (псевдогены), хотя некоторые могут соответствовать дополнительным локусам класса I, которые экспрессируются только на активированных Т-клетках; функции их неизвестны. Разработка специфических проб на локусы HLA-A и HLA-B поможет разобраться в этой достаточно сложной проблеме.

Комплемент (класс III). Структурные гены трех компонентов комплемента-С4, С2 и Bf-присутствуют в зоне HLA-B-D (см. рис. 63-1). Это два локуса С4, кодирующие С4А и С4В, первоначально описанные как эритроцитарные антигены Rodgers и Chido соответственно. Эти антигены оказались в действительности абсорбированными из плазмы молекулами С4. Другие компоненты комплемента не имеют тесного сцепления с HLA. Между генами С2, Bf и С4 кроссинговера не описано. Все они кодируются участком между HLA-B и HLA-DR длиной около 100ко. Существуют два аллеля С2, четыре Bf, семь С4А и три С4В, кроме того, в каждом локусе имеются молчащие аллели QO. Исключительная полиморфность гистотипов комплемента (комплотипы) делает эту систему пригодной для генетических исследований.

Таблица 63-1. Наиболее распространенные гаплотины HLA

В табл. 63-1 представлены четыре наиболее широко распространенных гаплотипа, обнаруженных у лиц западноевропейского происхождения. Результаты MLR у людей, не состоящих в родстве, отобранных по признаку совместимости по этим гаплотипам, отрицательны, в то же время реакция обычно имеет место, если неродственные индивиды подобраны только на совместимость по HLA-DR и DQ. Такие идентичные распространенные гаплотипы, возможно, в неизменном виде происходят от единого предка.

Другие гены 6-й хромосомы. Недостаточность стероид 21-гидроксилазы, аутосомно-рецессивный признак, вызывает синдром врожденной гиперплазии надпочечников (гл. 325 и 333). Ген для этого фермента локализуется на участке HLA-B-D. Ген 21-гидроксилазы, прилегающий к гену С4А, делетирован у лиц, страдающих упомянутым синдромом, вместе с С4А (C4AQO), и ген HLA-B может трансформироваться с конверсией В 13 в редкий Bw47, обнаруживаемый только в измененных гаплотипах. В отличие от поздно проявляющегося дефицита 21-гидроксилазы, сцепленного с HLA, врожденная гиперплазия надпочечников, связанная с дефицитом 21?-гидроксилазы, не сцеплена с HLA. В нескольких семейных исследованиях показано, что идиопатический гемохроматоз, аутосомно-рецессивное заболевание, сцеплено с HLA (см. гл. 310). Хотя патогенез расстройств всасывания железа в желудочно-кишечном тракте неизвестен, установлено, что гены, модулирующие этот процесс, находятся вблизи участка HLA-A.

Рис. 63-4. Схема относительной роли HLA-A, HLA-B, HLA-C и HLA-D антигенов в инициации аллоиммунного ответа и в образовании эффекторных клеток и антител.

Два главных класса Т-лимфоцитов распознают антигены: Тк - предшественники цитотоксических «киллерных» клеток и Тх-хелперные клетки, способствующие развитию цитотоксического ответа. Тх также обеспечивают помощь В-лимфоцитам при развитии «зрелого» IgG-ответа. Важно отметить, что Тк обычно распознают антигены класса I, тогда как сигнал для Тх создает преимущественно HLA-D, который тесно связан с антигенами класса II (из С. В. Carpenter.- Kidney International, 1978, 14, 283).

Гены иммунного ответа. При изучении in vitro ответа на синтетические полипептидные антигены, гемоцианин, коллаген, столбнячный токсоид выявлено, что зона HLA-D аналогична региону Н-2. I у мыши. Презентация антигенных фрагментов на поверхности макрофагов или других клеток, несущих молекулы II класса, требует сопряженного распознавания комплекса «молекула II класса + антиген» Т-лимфоцитами, несущими соответствующий рецептор (ы) (см. гл. 62). Стержнем этой гипотезы «свое-)-Х» или «измененное свое» состоит в том, что Т-зависимый иммунный ответ, действие Т-хелперов/индукторов (Тх) осуществляется только в том случае, если будут синтезированы соответствующие детерминанты класса II. Гены последних и есть Ir-гены. Поскольку аллогенные детерминанты класса И распознаются как уже измененные, аллогенная MLP представляет собой модель иммунной системы, в которой присутствие псевдоантигена необязательно (рис. 63-4). Эффекторные фазы иммунитета требуют распознавания псевдоантигена в комплексе с собственными структурами. Последние у человека, как и у мыши, представляют собой молекулы антигенов гистосовместимости I класса. Человеческие клеточные линии, инфицированные вирусом гриппа, лизируются иммунными цитотоксическими Т-лимфоцитами (Тк) только в том случае, если реагирующие клетки и клетки-мишени идентичны по локусам HLA-A и HLA-B. Аллогенная MLR служит моделью и для формирования цитотоксических Т-лимфоцитов, рестриктированных по классу I (см. рис. 63-4). Детали рестрикции по различным молекулам классов I и II и эпитопам могут быть вычленены при использовании примированных клеток, подвергшихся размножению и клонированию. Например, на уровне антигенпрезентирующих клеток данный Тх-клон распознает антигенный фрагмент, комплексированный со специфическим участком молекулы класса II, с помощью рецептора Ti. Рестриктирующими элементами.для некоторых микробных антигенов являются аллели DR и Dw.

Супрессия иммунного ответа (или, низкий уровень отвечаемости) к пыльце кедра, антигенам стрептококков и шистосом доминантна и сцеплена с HLA, что свидетельствует о существовании генов иммунной супрессии (Is). Показано также наличие специфических аллельных ассоциаций HLA с уровнем иммунного ответа, например, для антигена клещевины Ra5 - с DR2 и для коллагена - с DR4.

Ассоциации с болезнями. Если главный комплекс гистосовместимости выполняет важную биологическую функцию, то какова эта функция? Одна из гипотез состоит в том что он играет роль в иммунном надзоре за неопластическими клетками, появляющимися в течение жизни индивида. Велико значение этой системы при беременности, поскольку между матерью и плодом всегда существует тканевая несовместимость. Высокая степень полиморфизма может также способствовать выживаемости видов в противостоянии огромному числу микробных агентов присутствующих в окружающей среде. Толерантность к «своему» (аутотолерантность) может перекрестие распространяться на микробные антигены, следствием которой будет высокая восприимчивость, приводящая к возникновению смертельных инфекций, в то время как полиморфизм по системе HLA способствует тому что часть популяции распознает опасные агенты как чужеродные и включает адекватную ответную реакцию. Эти гипотезы связывают роль HLA с преимуществами, благодаря которым система выживает в условиях давления отбора Каждая из этих гипотез имеет определенные подтверждения.

Важным свидетельством роли комплекса HLA в иммунобиологии послужило обнаружение положительной ассоциации некоторых патологических процессов с антигенами HLA. Изучение этих ассоциаций было стимулировано открытием генов иммунного ответа, сцепленных с Н-2-комплексом, у мышеи. В табл. 63-3 суммированы наиболее значимые ассоциации HLA и болезней.

Установлено что частота встречаемости HLA-B27 повышается при некоторых ревматических заболеваниях, особенно при анкилозирующем спондилите, заболевании явно семейного характера. Антиген В27 имеется лишь у 7% лиц западноевропейского происхождения, но его обнаруживают у 80-90% больных анкилозирующим спондилитом. В пересчете на относительный риск это означает, что этот антиген ответствен за восприимчивость к развитию анкилозирующего спондилита, которая в 87 раз выше у его носителей, чем в общей популяции. Аналогично показана высокая степень ассоциации с антигеном В27 острого переднего увеита, синдрома Рейтера и реактивных артритов по крайней мере при трех бактериальных инфекциях (иерсиниозе, сальмонеллезе и гонорее). Хотя обычная форма ювенильного ревматоидного артрита также ассоциирована с В27, тип заболевания со слабо выраженным суставным синдромом и иритом связан с В27. При псориатическом артрите центрального типа чаще встречается В27, тогда как Bw38 ассоциирован как с центральным, так и с периферическим типами. Псориаз ассоциирован с Cw6. У больных с дегенеративным артритом или подагрой не обнаруживается каких-либо изменений в частоте встречаемости антигенов.

Большинство других ассоциаций с болезнями свойственно антигенам HLA-D-зоны Например, глютенчувствительная энтеропатия у детей и взрослых ассоциирована с антигеном DR3 (относительный риск 21) Действительный процент больных с данным антигеном варьирует от 63 до 96% в сравнении с 22-27% в контроле. Тот же антиген чаще обнаруживается у больных с активным хроническим гепатитом и герпетиформным дерматитом, страдающих в то же время и глютенчувствительной энтеропатией. Ювенильный инсулинзависимыи сахарный диабет (тип I) ассоциирован с DR3 и DR4 и отрицательно ассоциирован с DR2 У 17-25% больных диабетом I типа обнаружен редкий аллель Bf (М). Диабет с началом во взрослом периоде жизни (типа II) не имеет ассоциации с HLA. Гипертиреоидизм в США ассоциирован с В8 и Dw3, в то время как в японской популяции - с Bw35. Более широкое обследование здоровых и больных представителей различных рас поможет прояснить вопрос об универсальных HLA-маркерах. Например, антиген В27, редкий у здоровых лиц японской национальности, обычен у больных с анкилозирующим спондилитом. Точно так же DR4 - маркер тля диабета I типа у представителей всех рас. Иногда HLA-маркер явно ассоциирован только с частью симптомов внутри синдрома. Например, миастения значительно сильнее ассоциирована с антигенами В8 и DR3 у больных без тимомы, а рассеянный склероз - с антигеном DR2 у лиц с быстро прогрессирующим течением болезни. Синдром Гудпасчера, связанный с аутоиммунным поражением клубочковых базальных мембран, идиопатический мембранозный гломерулонефрит, отражающий аутоиммунные процессы с образованием антител к антигенам клубочков, а также мембранозный нефрит, индуцированный золотом, в значительной степени ассоциированы с HLA-DR.

Таблица 63-3. Заболевания, ассоциированные с HLA-антигенами

Неравновесное сцепление. Хотя распределение аллелей HLA варьирует в расовых и этнических популяциях, наиболее характерную особенность популяционной генетики антигенов HLA представляет наличие неравновесного сцепления для некоторых антигенов А и В, В и С, В, D и локусов комплемента. Неравновесность сцепления означает, что антигены тесно сцепленных локусов оказываются вместе чаще, чем следует из предположения о случайной ассоциации. Классическим примером неравновесного сцепления является связь антигена локуса AHLA-A1 с антигеном локуса В HLA-B8 у лиц западноевропейского происхождения. Одновременное наличие А1 и В8, рассчитанное на основе частот их генов, должно наблюдаться с частотой 0,17. 0,11, т. е. примерно 0,02. Тогда как наблюдаемая частота их сосуществования составляет 0,08, т. е. в 4 раза больше, чем ожидаемая, и разность между этими величинами составляет 0,06. Последняя величина обозначается дельта (?) и служит мерой неравновесности. Обнаружено неравновесное сцепление и других гаплотипов А- и В-локусов: A3 и В7, А2 и В 12, А29 и В 12, A11 и Bw35, Для некоторых детерминант D-зоны описано неравновесное сцепление с антигенами В-локуса (например, DR3 и В8); а также для антигенов В- и С-локусов. Серологически выявляемые антигены HLA служат маркерами для генов целого гаплотипа внутри семейства и маркерами специфических генов в популяции, но только при наличии неравновесного сцепления.

Значение неравновесного сцепления велико, поскольку такие генные ассоциации могут порождать определенные функции. Давление отбора в процессе эволюции может быть основным фактором в сохранении некоторых генных комбинаций в генотипах. Так, например, существует теория, согласно которой А1 и В8, а также некоторые детерминанты D и других регионов обеспечивают селективное преимущество перед лицом эпидемий таких болезней, как чума или оспа. Однако возможно также, что потомки людей, выживших во время подобных эпидемий, сохраняют восприимчивость к иным болезням, поскольку их уникальный генный комплекс не обеспечивает адекватный ответ на другие факторы окружающей среды. Главная трудность этой гипотезы состоит в допущении, что отбор действует на несколько генов одновременно и обеспечивает тем самым возникновение наблюдаемых значений Л, однако потребность в сложных взаимодействиях между продуктами разных локусов МНС-комплекса - лишь начальное звено для наблюдаемых явлений и селекция может усилить множественное неравновесное сцепление. Сохранение некоторых распространенных гаплотипов, названных выше, поддерживает этот взгляд.

С другой стороны, гипотеза отбора необязательно должна объяснять неравновесное сцепление. Когда популяция, лишенная некоторых антигенов, скрещивается с другой, для которой характерна высокая частота этих антигенов, находящихся в равновесии, ? может проявиться через несколько поколений. Например, нарастание? для А1 и В8, обнаруженное в популяциях в направлении с востока на запад, от Индии к Западной Европе, может быть объяснено на основе миграции и ассимиляции населения. В малых группах неравновесность может быть обусловлена совместимостью, эффектом основателей и дрейфом генов. Наконец, некоторые случаи неравновесного сцепления являются результатом неслучайного кроссинговера во время мейоза, так как хромосомные сегменты могут быть в большей или меньшей степени ломкими. Будь то давление отбора или ограничения кроссинговера, неравновесность сцепления может исчезать в течение нескольких поколений. Большое число неслучайных ассоциаций имеется в HLA-генном комплексе и определение их причин может обеспечить проникновение в механизмы, лежащие в основе чувствительности к болезням.

Сцепление и ассоциации. В табл. 63-2 перечислены болезни, служащие примером сцепления с HLA, когда наследственные признаки маркируются в пределах семьи соответствующими гаплотипами. Например, дефицит С2, 21-гидроксилазы, идиопатический гемохроматоз наследуются по рецессивному типу с наличием часгичного дефицита у гетерозигот. Эти генетические нарушения также являются HLA-ассоциированными и обусловливаются избытком некоторых HLA-аллелей у больных людей, не состоящих в родстве. Дефицит С2 обычно сцеплен с гаплотипами HLA-Aw 25, В 18, В55, D/DR2, а при идиопатическом гемохроматозе проявляется как сцепление, так и сильная ассоциация между HLA-A3 и В 14. Высокая степень неравновесного сцепления в этом случае вызвана мутациями у лица, послужившего его источником; кроме того, недостаточен был период времени, необходимый для возвращения пула генов в состояние равновесия. С этой точки зрения HLA-гены - простые маркеры сцепленных генов. С другой стороны, для проявления конкретного нарушения может требоваться взаимодействие со специфическими HLA-аллелями. Последняя гипотеза потребовала бы признания более высокого темпа мутаций с экспрессией дефектных генов, что происходит только при условии сцепления с некоторыми HLA-генами.

Болезнь Педжета и спинно-мозжечковая атаксия являются HLA-сцепленными аутосомно-доминантными наследственными заболеваниями; они обнаруживаются сразу у нескольких членов семьи. Болезнь Ходжкина служит проявлением HLA-сцепленного рецессивного наследственного дефекта. Никаких HLA-ассоциаций не было обнаружено при этих заболеваниях, что свидетельствует в пользу исходной множественности «основоположников» этих болезней с мутациями, связанными с различными аллелями HLA.

Сцепление с HLA без труда определяется, когда доминантность и рецессивность признаков легко разграничить, т. е. когда высока экспрессивность и процесс детерминируется дефектом единичных генов. При большинстве ассоциаций HLA-маркеры отражают факторы риска, вовлекаемые в реализацию и модуляцию иммунного ответа под влиянием множественных генов. Примером полигенного иммунного заболевания является атоническая аллергия, при которой ассоциация с HLA может быть очевидной только у лиц с низким генетически контролируемым (не в связи с HLA) уровнем продукции IgE. Другой пример такого рода - дефицит IgA (см. табл. 63-3), ассоциированный с HLA-DR3.

Клиническое значение системы HLA. Клиническое значение типирования HLA для диагностики ограничивается определением В27 при диагностике анкилозирующего спондилита; тем не менее и в этом случае наблюдается 10% ложноположительных и ложноотрицательных результатов. Изучение HLA имеет ценность также в практике генетических консультаций для раннего определения болезней в семьях с идиопатическим гемохроматозом, врожденной гиперплазией надпочечников, связанной с дефицитом стероидгидроксилазы, в особенности если HLA-типирование осуществляется на клетках, полученных амниоцентезом. Высокая степень полиморфизма в системе HLA делает ее ценным инструментом для тестирования различных клеточных препаратов, в особенности в судебно-медицинской практике. Некоторые болезни, такие как сахарный диабет I типа и другие, для которых показаны HLA-ассоциации, требуют дополнительного изучения роли компонентов системы HLA в патогенезе этих заболеваний

При первой пересадке сердца человека, сделанной в 1967 г. К. Барнардом, и сотнях последующих хирурги столкнулись с проблемой отторжения трансплантата. Оказалось, что главная трудность заключается не в технике операции, которая сейчас разработана достаточно хорошо, а в несовместимости тканей, обусловленной иммунологическими механизмами. Так, у челове­ка выживание трансплантатов реципиентов, взятых от случайно­го донора, составляет 10,5 дня, тогда как трансплантаты, обме­ненные между однояйцовыми близнецами (изотрансплантаты), приживаются. Это происходит благодаря наличию на поверхнос­ти клеток антигенов, называемых трансплантационными антиге­нами или антигенами гистосовместимости. Большинство транс­плантационных антигенов расположены на лейкоцитах, но они имеются и на всех других ядросодержащих клетках (клетках кожи, легких, печени, почек, кишечника, сердца и т. д.). Гены, кодирующие эти антигены, называются генами тканевой совмес­тимости. Система генов, контролирующая трансплантационные антигены лейкоцитов, названа главным комплексом гистосов­местимости (англ. Major Histocompatibility complex - МНС). Гены гистосовместимости кодоминантны.

Эффективность трансплантации зависит не только от лейко­цитарных и эритроцитарных антигенов, но и от минорной систе­мы гистосовместимости. Трансплантаты между монозиготными близнецами приживаются. Однако у братьев и сестер при совпа­дении по МНС-гаплотипам, но несовпадении по минорным сис­темам гистосовместимости происходит отторжение транспланта­тов кожи.

После иммуноглобулинов и рецепторов Т-клеток белки глав­ного комплекса гистосовместимости самые разнообразные из всех белков. Различают два класса белков МНС. Белки класса I находятся на поверхности почти всех клеток. Молекула белка состоит из двух полипептидных цепей: большой и малой. Белки


МНС класса II имеются на поверхности некоторых клеток (В-" лимфоциты, макрофаги, специализированные эпителиальные., клетки), а их молекула состоит из примерно равных полипептид-* ных цепей. Белки МНС имеют некоторое сходство с иммуногло­булинами. Основная роль белков МНС состоит не в отторжении чужой ткани, а в направлении реакции Т-клеток на антиген. Цитотоксические Т-клетки могут узнавать антиген, если он расположен вместе с белками МНС класса I на поверхности одной клетки. Т-хелперы узнают антиген в комбинации с белками МНС класса П. Такое двойное стимулирование называется МНС-о граничением. Впервые главную систему тканевой совместимости мыши Н-2 открыл П. Горер в 1936 г. Кроме Н-2 найдено много локусов тканевой совместимости, расположенных во всех хромосомах.

В 1980 г. Д. Снелл, Ж. Доссе и Б. Бенацерафф получили Но­белевскую премию за «различные аспекты исследования, привед­шего к современному пониманию системы генов гистосовмести­мости человека». Д. Снелл сформулировал основные генетичес­кие законы совместимости тканей и получил данные о тонком строении локуса Н-2 у мышей.

Система Н-2 довольно хорошо изучена, поэтому она служит хорошей моделью для исследования МНС у других видов живот­ных. Комплекс Н-2 включает несколько тесно сцепленных локу­сов длиной 0,35 сМ, расположенных в 17-й хромосоме. Ком­плекс Н-2 разделен на пять областей: К, I, S, G, D (рис. 56).


Генетика главного комплекса гистосовместимости
В 20-е годы XX века в Джексоновской лаборатории (Бар Харбор, США) была проведена масштабная работа по получению генетически чистых линий мышей путем длительного инбридинга. В опытах с межлинейной пересадкой опухолей сотрудники этой лаборатории Дж.Д. Литтл (G.D. Little), Дж. Снелл (G. Snell) и другие американские исследователи установили существование нескольких десятков (более 30) генетических локусов, различие по которым обусловливает отторжение трансплантируемых тканей. Они были обозначены как локусы гистосовместимости (Н-локусы, от английского Histocompatibility). Одновременно сходную задачу решал английский иммунолог П. Горер (P. Gorer), изучая группы крови мышей. В 1948 г. в совместной работе Дж. Снелла и П. Горера был описан локус гистосовместимости, определяющий наиболее сильную реакцию отторжения. Он был назван Н-2, поскольку соответствовал гену 2-й группы крови мышей. Вскоре была установлена сложная структура этого генетического комплекса, включающего очень большое число генов. К тому времени уже была доказана иммунологическая природа отторжения трансплантата и было ясно, что эффект несовместимости по Н-локусам обусловлен различиями в антигенах, кодируемых генами этого локуса. Такие антигены стали называть аллоантигенами, или антигенами гистосовместимости.
В 60-е годы ХХ века французский иммуногематолог Ж. Доссе (J. Dausset) описал несколько антигенов лейкоцитов, аналогичных некоторым аллельным продуктам Н-2. Вскоре Ж. Доссе вместе с другими специалистами по генетике трансплантаций на основе анализа накопленных к тому времени данных об аллоантигенах человека постулировал существование у человека генетического комплекса, аналогичного локусу Н-2 мышей. Была выявлена принадлежность к этому комплексу нескольких аллоантигенов, открытых ранее благодаря использованию сывороток многократно рожавших женщин. В этих сыворотках присутствовали антитела к аллоантигенам плодов. Открытый генетический комплекс был назван HLA (от Human leukocyte antigens). Аналогичные комплексы были обнаружены у всех изучавшихся млекопитающих и птиц. В связи с этим было введено общее обозначение для генетических комплексов такого рода - MHC (от Major histocompatibility complex). Это обозначение было перенесено и на продукты генов - MHC-антигены.
Комплекс Н-2 локализуется в хромосоме 17 мыши; комплекс HLA - в коротком плече хромосомы 6 человека (6р). Структура локуса HLA человека схематично представлена на рис. 3.28. Он занимает очень большое

Рис. 3.28. Карта генов главного комплекса гистосовместимости (MHC) на примере комплекса лейкоцитарных антигенов человека (HLA). Участок хромосомы разделен на 4 отрезка, представленные на рисунке последовательно. Справа указаны номера 3’-нуклеотидов каждого отрезка

пространство - 4 млн пар нуклеотидов и содержит больше 200 генов. Выделяют 3 класса генов MHC - I, II и III. В отторжении несовместимых трансплантатов и презентации антигена Т-клеткам участвуют продукты генов классов I и II, расположенные соответственно в 3’- и 5’-частях комплекса. Первоначально их разделяли по индукции их продуктами преимущественно гуморального (I класс) или клеточного (II класс, описанный несколько позже, чем I) иммунитета. Выделяют 2 группы генов I класса. Первую образуют гены А, В и С, отличающиеся беспрецедентно высоким полиморфизмом - известно по нескольку сотен их аллельных форм (например, HLA-B - 830) - см. табл. 3.7. Это классические гены I класса. Другую группу образуют неклассические гены Е, F, G, H (гены с ограниченным полиморфизмом). Только продукты классических генов I класса участвуют в презентации антигена Т-лимфоцитам.
Таблица 3.7. Полиморфизм генов лейкоцитарных антигенов человека (HLA)

Окончание табл. 3.7


Класс

Локус

Число аллелей, выявленных ДНК-типированием

II

HLA-DRA

3


HLA-DRB1

463


HLA-DRB2-9

82


HLA-DQA1

34


HLA-DQB1

78


HLA-DPA1

23


HLA-DPB1

125


HLA-DOA

12


HLA-DOB

9


HLA-DMA

4


HLA-DMB

7

Всего


2478

Гены MHC класса II также включают несколько вариантов. В презентации антигена непосредственно участвуют продукты генов DR (а и в), DP (а и в) и DQ (а и в), кодирующие соответствующие полипептидные цепи молекул. Во всех случаях для генов в-цепей характерен значительно более высокий полиморфизм, чем для генов а-цепей. Более позднее обнаружение этих генов связано с трудностями идентификации их продуктов: сыворотки многократно рожавших женщин, использованные для выявления продуктов MHC, содержали антитела к молекулам MHC почти исключительно I класса. С их помощью выявлены только аллоантигенные варианты гена HLA-DRB. Для определения молекул II класса применяли смешанную культуру лимфоцитов (т.е. Т-клеточную реакцию), предоставляющую значительно меньше возможностей для выявления тонкостей антигенных различий. В настоящее время антигены обоих классов определяют в полимеразной цепной реакции (т.е. определяют именно гены, а не их продукты, как раньше). К классу II относят несколько генов с невысоким уровнем полиморфизма, продукты которых не презентируют антиген, но участвуют в его внутриклеточной обработке - процессинге (гены ТАР, LMP) или способствуют встраиванию антигенного пептида в молекулы MHC-II (HLA-DM, HLA-DO).
Гены MHC класса III, как уже упоминалось, не причастны к молекулам гистосовместимости и осуществляемой ими презентации. Они кодируют некоторые компоненты комплемента, цитокины семейства фактора некроза опухоли, белки теплового шока.
Строение мышиного локуса Н-2 аналогично описанному выше строению локуса HLA человека. Основное различие касается локализации генов класса I (К и D), которые у мышей пространственно разобщены, тогда как расположение генов классов II (A, E) и III соответствует таковому в локусе HLA человека.

Молекулы MHC - полиморфные продукты главного комплекса гистосовместимости классов I и II
При значительном сходстве общего плана строения молекул MHC классов I и II они имеют ряд различий. Схема доменной структуры этих молекул представлена на рис. 3.29. Молекулы обоих типов образованы двумя полипептидными цепями, содержащими 1-3 домена (табл. 3.8). Каждый домен содержит около 90 аминокислотных остатков. Молекулы MHC классов I и II имеют сходную молекулярную массу - около 60 кДа.

Рис. 3.29. Схема строения молекул MHC

Таблица 3.8. Характеристика полипептидных цепей молекул HLA классов I и II


Молекула

Название цепи

ей
о
О
ей
S
о А

Внеклеточные
домены

1
Я
О. g
1 | Ф Z, 2 ?
* ^ Й в
г- з н *

Число
S-S-связей

Число остатков в доменах

1
Я
О
Н
Ф
ч
ф в
я 3 CQ Q

1
ю
S
ф
S « « 3 и я
ей щ Н о.

I *
А н
* ^ м О
и 2 о? н S я Й Я 2

HLA, класс I

«1

45

аЬ ^ а3

есть

2

90-90-90

25

30

в2-микро-
глоублин

12

в2-микро-
глобулин

нет

0

100

-

-

HLA, класс II

а

33-35

ai, а2

есть

1

90-90

25

варьирует

в

29

Pi, в2

есть

2

90-90

25

варьирует

В молекулах класса I полипептидные цепи сильно отличаются друг от друга. Цепь а состоит из трех внеклеточных доменов, из которых 3-й (прилегающий к мембране) принадлежит суперсемейству иммуноглобулинов, а 2 других имеют иное строение, которое рассмотрим ниже. а-Цепь заякорена в мембране; помимо трансмембранного, она имеет короткий цитоплазматический участок (30 остатков), не обладающий ферментативной активностью и не связанный с ферментами. в-Цепь, называемая также Р2-микроглобулином, относится к суперсемейству иммуноглобулинов. Она нековалентно связана с а3-доменом а-цепи и не имеет трансмембранного участка. р2-Микроглобулин кодируется геном, расположенным вне комплекса MHC (в хромосоме 15). Описанная структура свойственна молекулам HLA-A, HLA-B и HLA-C человека, а также молекулам H-2K и H-2D мыши и молекулам MHC-I всех других видов животных.
Молекулы MHC-II тоже имеют одинаковое строение для HLA-DP, HLA-DQ, HLA-DR человека, а также Н-2А и Н-2Е мыши. В их состав входят 2 цепи аналогичного строения - а и р. Обе цепи пронизывают мембрану, имеют 2 домена во внеклеточной части и короткий (12-15 остатков) цитоплазматический участок. Домены а2 и р2, прилежащие к мембране, принадлежат к суперсемейству иммуноглобулинов, а дистальные домены aj и Pj по своей структуре сходны с доменами а1 и а2 молекул MHC-I.
Таким образом, все молекулы MHC в общей сложности содержат 2 при- мембранных домена суперсемейства иммуноглобулинов и 2 дистальных домена другой (сходной между собой) структуры. Дистальные домены в молекулах MHC-I образованы одной цепью (а), а в молекулах MHC-II - разными цепями (а и р). Именно эти дистальные домены молекул MHC связывают антигенный пептид и играют ключевую роль в формировании лиганда TCR.
Схематично строение антигенсвязывающих полостей (или желобков, щелей - от английского - groove) представлено на рис. 3.30. Полости имеют дно и стенки. Дно - плоский участок, выстланный р-слоистой (N-концевой) частью доменов полипептидной цепи, тогда как стенки сформированы С-концевыми а-спирализованными участками доменов. В молекулах MHC-I вся эта структура образована непрерывной полипептидной цепью а1 и а2-доменов единой а-цепи, тогда как в молекулах MHC-II пеп- тидсвязывающая полость образована доменами двух разных цепей (а1- и Pj-доменами соответствующих цепей), примыкающих друг к другу в области в-структурированного дна желобка.
Выше говорилось о чрезвычайно высоком полиморфизме классических молекул MHC обоих классов: существует по нескольку сотен аллельных вариантов генов и, следовательно, их белковых продуктов. Если наложить расположение варьирующих аминокислотных остатков на схему молекул MHC, оказывается, что, во-первых, они расположены в основном в дистальных доменах (а1 и а2 - в молекулах MHC-I, а1 и Pj - в молекулах MHC-II), во-вторых, они связаны почти исключительно со стенками антигенсвязыва- ющей полости. В молекулах MHC-II варибельность преобладает в той части стенок, которая образована ргдоменом. Таким образом, эта полость имеет стандартную организацию, но в зависимости от MHC-генотипа, тонкие детали ее строения варьируют. Сродство различных пептидов к антигенсвя-


Рис. 3.30. Трехмерные модели строения молекул главного комплекса гистосовместимости. Пространственные модели молекул главного комплекса гистосовместимости, представленные под разными углами зрения (по Bjorkman et al, 1987)

зывающей щели молекул MHC изменяется в широких пределах. Достаточно высоким считается сродство порядка 10-5 М.
Подчеркнем одно очень важное обстоятельство, касающееся вариабельности ключевых молекул иммунной системы. Исключительно высокий уровень вариабельности свойствен как антигенраспознающим структурам (антителам, TCR), так и молекулам MHC, участвующим в построении лиганда "TCR. Однако все варианты антител и TCR (порядка 106) присутствуют в одном организме, являясь продуктами одновременно присутствующих в нем генов, в то время как вариабельность молекул МНС проявляется на

уровне популяций человека и животных, тогда как в каждом конкретном организме может присутствовать не более 2 вариантов молекул - продуктов аллельных генов. Если учесть, что у человека есть 8 высокаполиморфных генов MHC (А, В, С, а также p-гены DP, DQ и DR и a-гены DP и DQ), то число вариантов полипептидных цепей MHC не может превышать 16.
Молекулы MHC-I и MHC-II представлены на поверхности клеток, но существенно различаются по тканевому распределению. Молекулы MHC-I присутствуют практически на всех ядросодержащих клетках организма и отсутствуют на эритроцитах и клетках ворсинчатого трофобласта. На каждой клетке обычно содержится около 7000 молекул MHC-I. Плотность их экспрессии может изменяться под влиянием различных факторов, в частности, цитокинов. Молекулы MHC-II присутствуют на поверхности ограниченного числа клеточных типов. Они экспрессируются прежде всего на АПК - дендритных клетках, В-лимфоцитах и активированных макрофагах. Содержание молекул на поверхности этих клеток сильно варьирует. На одной дендритной клетке обычно содержится порядка 100 000 молекул MHC-II. При определенных условиях (например, при воспалении) они могут появляться на поверхности других активированных клеток - эпителиальных, эндотелиальных и т.д. Классический индуктор молекул MHC-II - IFNy. Особенность мембранных молекул MHC - их быстрый обмен на поверхности клеток, особенно характерный для MHC-I (время обновления молекул - около 6 ч).
Особую группу антигенпрезентирующих молекул образуют гомологи продуктов MHC-I - молекулы CD1 (CD1a, CD1b, CD1c и CD1d), кодируемые пятью полиморфными генами (CD1 A-D), локализованными у человека в хромосоме 1. По своей структуре молекулы CD1 сходны с MHC-I (гомология составляет 20-25%). Они обладают сходной доменной структурой (домены aj, a2 и a3). CD1 - трансмембранные белки, связанные с молекулой р2-мик- роглобулина. Молекулярная масса белковой части CDl-комплекса - 33 кДа. Домены aj и a2 образуют антигенсвязывающую полость, закрытую с обоих концов (как и в молекулах MHC-I). Ее вместимость несколько больше, чем в молекулах MHC-I. CD1 связывает бактериальные и аутологичные липиды (диацилглицерол, миколевую кислоту и т.д.) и липопептиды. От других молекул CD1 по ряду свойств отличается CD1d. Эта молекула связывает аутологчиные гликолипиды. Ее наиболее известный лиганд - a-галакто- зилцерамид. Молекулы CD1a, CD1b и CD1c экспрессируются на поверхности дендритных клеток, моноцитов и макрофагов, причем у человека CD1c служит маркером всей популяции дендритных клеток, а CD^ - клеток Лангерганса. CD1d в малом количестве экспрессируется на дендритных клетках (кроме клеток Лангерганса), моноцитах и макрофагах.

МНС формируется большой группой генов, расположенных на коротком плече хромосомы 6. На основе структурных и функциональных различий эти гены подразделяют на три класса, два из которых, класс I и класс II, относятся к генам HLA, первоначально обнаруженных благодаря их значению в пересадке тканей между неродственными индивидуумами.

Гены класса I и II кодируют поверхностные белки клеток, играющие определяющую роль в инициации иммунного ответа, особенно в «распознавании» антигена лимфоцитами, которые не могут реагировать на антиген, если он не образует комплекс с молекулой HLA на поверхности содержащей антиген клетки. Известно много сотен разных аллелей HLA класса I и И, и ежедневно обнаруживают новые аллели, что делает их наиболее полиморфными локусами в геноме человека.

Гены класса I (HLА-А, HLA-B и HLA-C) кодируют белки, выступающие неотъемлемой частью плазматической мембраны всех ядерных клеток. Белки класса I состоят из двух полипептидных субъединиц: вариабельной тяжелой цепи, кодируемой в пределах МНС, и неполиморфного полипептида, b2-микроглобулина, кодируемого геном, расположенным за пределами МНС и картированным на хромосоме 15. Производные от внутриклеточных белков пептиды образуются путем протеолитического расщепления большими многофункциональными протеазами; затем пептиды перемещаются на поверхность клетки и прикрепляются к молекулам класса I, формируя пептидный антиген для цитотоксических Т-клеток.

Регион класса II состоит из нескольких локусов, таких как HLA-DP, HLA-DQ и HLA-DR, кодирующих поверхностные белки клеточной оболочки. Каждая молекула класса II - гетеродимер, сформированный из а- и b-субъединиц, закодированных в МНС. Молекулы класса II представляют пептиды, производные от внеклеточных белков, которые захватываются лизосомами и перерабатываются в пептиды, узнаваемые Т-клетками.

В пределах МНС присутствуют локусы и других генов, но не имеющих функционального отношения к генам HLA класса I и II и не определяющих гистосовместимость или иммунные ответные реакции. Некоторые из этих генов, тем не менее, связаны с болезнями, например врожденной гиперплазией надпочечников, вызываемую недостаточностью 21-гидроксилазы, и гемохроматозом, болезнью печени, вызванной накоплением железа.

Аллели и гаплотипы главного комплекса гистосовместимости (HLA)

Система HLA сначала может показаться запутанной, поскольку номенклатура, используемая для определения и описания разных аллелей HLA, подвергалась фундаментальным изменениям по мере распространения секвенирования ДНК МНС. Согласно более старой, традиционной системе номенклатуры HLA, разные аллели отличались друг от друга серологически. Индивидуальные типы HLA определялись тем, как панель различных антисывороток или чувствительных лимфоцитов реагирует на клетки.

Антисыворотки и клетки получали от сотен беременных, развивших иммунный ответ против отцовских антигенов I и II типа, экспремируемых плодами в ходе беременности. Если клетки от двух не связанных родственными отношения индивидуумов вызывали ту же реакцию при внесении в панель антител и клеток, считали, что они имеют те же типы и аллели HLA, обозначаемые их номером, например В27 в локусе HLA-B класса I или DR3 в локусе DR класса II.

Тем не менее после идентификации и секвенирования генов, ответственных за кодирование цепей МНС класса I и класса II, отдельные первоначально определенные серологически аллели HLA даже в пределах одного серологического аллеля оказались состоящими из многочисленных аллелей, определяемых различными вариантами последовательности ДНК. 100 серологически определяемых типов HLA-A, В, С, DR, DQ и DP теперь включают более 1300 аллелей, определяемых на уровне последовательности ДНК.

Например, в гене HLA-B , прежде определявшемся серологической реакцией как единый аллель В27, обнаружено более 24 различных вариантов последовательности нуклеиновых кислот. Большинство, хотя и не все, варианты ДНК представляют изменение кодона триплета и, следовательно, аминокислоты в пептиде, кодируемом этим аллелем. Каждый аллель, изменяющий аминокислоту в пептиде HLA-B, получает свой дополнительный последовательный номер, например аллель1, 2, и так далее в группе аллелей, соответствующих ранее единственному аллелю В27, и теперь называется HLA-B*2701, HLA-B*2702 и так далее.

Набор аллелей HLA в различных локусах класса I и II в данной хромосоме формирует гаплотип. Аллели кодоминантны; каждый из родителей имеет два гаплотипа и экспрессирует их оба. Эти локусы располагаются достаточно близко друг к другу, так что в конкретной семье гаплотип может передаваться ребенку как единый блок. В результате родитель и ребенок имеют общий гаплотип, а шанс, что два сибса унаследуют один гаплотип HLA, равен 25%.

Поскольку приживление пересаженных тканей в основном согласуется со степенью сходства между HLA гаплотипами донора и реципиента (и группы крови АВО), лучший донор костного мозга или органа - АВО-совместимый и HLA-идентичный сибс реципиента.

В любой этнической группе некоторые аллели HLA обнаруживаются часто, а другие - редко или никогда. Аналогично некоторые гаплотипы встречаются чаще, чем ожидалось, тогда как другие - исключительно редко или не встречаются вовсе. Например, большинство из Зх107 теоретически возможных комбинаций аллелей в гаплотипе в белой популяции никогда не встречаются. Это ограничение в разнообразии гаплотипов в популяции, возможно, вызвано ситуацией, получившей название неравновесного сцепления и может объясняться сложным взаимодействием множества факторов.

Эти факторы включают низкие показатели мейотической рекомбинации из-за небольшого расстояния между локусами HLA; влияние окружающей среды, обеспечивающее положительный отбор для конкретных комбинаций аллелей HLA, формирующих гаплотип; и исторические факторы, например, как давно образовалась популяция, число основателей и интенсивность происходившей иммиграции (см. далее в этой главе).

Между популяциями также существуют значительные различия в частоте аллелей и гаплотипов. То, что бывает частым аллелем или гаплотипом в одной популяции, может оказаться очень редким в другой. Различия в распределении и частоте аллелей и гаплотипов в пределах МНС - результат сложного взаимодействия генетических, средовых и исторических факторов в каждой конкретной популяции.



Что еще почитать