Признаки локального возрастания и убывания функции. Необходимые и достаточные условия существования экстремума функции в точке. Экстремумы функции: признаки существования, примеры решений Экстремум функции критические точки необходимый признак экстремума

Теорема (первое достаточное условие экстремума). Пусть в точке функция непрерывна, а производная при переходе через точку меняет знак. Тогда – точка экстремума: максимума, если знак меняется с «+» на «–», и минимума, если с «–» на «+».

Доказательство. Пусть при и при .

По теореме Лагранжа , где .Тогда если , то ; поэтому и , следовательно, , или . Если же , то ; поэтому и , следовательно, или .

Таким образом доказано, что в любых точках вблизи , т.е. – точка максимума функции .

Доказательство теоремы для точки минимума проводится аналогично. Теорема доказана .

Если при переходе через точку производная не меняет знак, то в точке экстремума нет.

Теорема (второе достаточное условие экстремума). Пусть в точке производная дважды дифференцируемой функции равна 0 (), а ее вторая производная в этой точке отлична от нуля () и непрерывна в некоторой окрестности точки . Тогда – точка экстремума ; при это точка минимума, а при это точка максимума.

Алгоритм нахождения экстремумов функции с помощью первого достаточного условия экстремума.

1. Найти производную.

2. Найти критические точки функции.

3. Исследовать знак производной слева и справа от каждой критической точки и сделать вывод о наличии экстремумов.

4. Найти экстремальные значения функции.

Алгоритм нахождения экстремумов функции с помощью второго достаточного условия экстремума.

1. Найти производную .

2. Найти вторую производную .

3. Найти те точки, в которых .

4. В этих точках определить знак .

5. Сделать вывод о существовании и характере экстремумов.

6. Найти экстремальные значения функции.

Пример. Рассмотрим . Найдем . Далее, при и при . Исследуем критические точки с помощью первого достаточного условия экстремума. Имеем, что при и при , и при . В точках и производная меняет свой знак: при с «+» на «–» и при с «–» на «+». Это значит, что в точке функция имеет максимум, а точке – минимум; . Для сравнения исследуем критические точки с помощью второго достаточного условия экстремума. Найдем вторую производную . Имеем: , а это значит, что в точке функция имеет максимум, а точке – минимум.

Понятие асимптоты графика функции. Горизонтальные, наклонные и вертикальные асимтоты. Примеры.

Определение . Асимптотой графика функции называется прямая, обладающая тем свойством, что расстояние от точки до этой прямой стремится к нулю при неограниченном удалении точки графика от начала координат.



Различают вертикальные (рис. 6.6 а), горизонтальные (рис. 6.6 б) и наклонные (рис. 6.6 в) асимптоты.

На рис. 6.6а изображена вертикальная асимптота .

На рис 6.6б – горизонтальная асимптота .

На рис. 6.6в – наклонная асимптота .

Теорема 1. В точках вертикальных асимптот (например, ) функция терпит разрыв, ее предел слева и справа от точки равен :

Теорема 2. Пусть функция определена при достаточно больших и существуют конечные пределы

И .

Тогда прямая является наклонной асимптотой графика функции .

Теорема 3. Пусть функция определена при достаточно больших и существует предел функции . Тогда прямая есть горизонтальная асимптота графика функции .

Горизонтальная асимптота является частным случаем наклонной асимптоты, когда . Поэтому, если в каком-либо направлении кривая имеет горизонтальную асимптоту, то в этом направлении нет наклонной, и наоборот.

Пример. Найти асимптоты графика функции .

Решение . В точке функция не определена, найдем пределы функции слева и справа от точки :

; .

Следовательно, - вертикальная асимптота.

Общая схема исследования функций и построения их графиков. Пример.

Общая схема исследования функции и построения ее графика.

1. Найти область определения .

2. Исследовать функцию на четность – нечетность.

3. Найти вертикальные асимптоты и точки разрыва (если есть).

4. Исследовать поведение функции в бесконечности; найти горизонтальные и наклонные асимптоты (если есть).

5. Найти экстремумы и интервалы монотонности функции.

6. Найти точки пересечения графика с осями координат и, если это нужно для схематического построения графика, найти дополнительные точки.

7. Схематично построить график.

Подробная схема исследования функции и построения графика .

1. Найти область определения .

a. Если у есть знаменатель, он не должен обращаться в 0.



b. Подкоренное выражение корня четной степени должно быть неотрицательным (больше либо равно нулю).

c. Подлогарифмическое выражение должно быть положительным.

2. Исследовать функцию на четность – нечетность.

a. Если , то функция четная.

b. Если , то функция нечетная.

c. Если не выполнено ни , ни , то – функция общего вида.

3. Найти вертикальные асимптоты и точки разрыва (если есть).

a. Вертикальная асимптота может возникнуть только на границе области определения функции.

b. Если ( или ), то – вертикальная асимптота графика .

4. Исследовать поведение функции в бесконечности; найти горизонтальные и наклонные асимптоты (если есть).

a. Если , то – горизонтальная асимптота графика .

b. Если и , то прямая является наклонной асимптотой графика .

c. Если пределы, указанные в п. a, b, существуют только при одностороннем стремлении к бесконечности ( или ), то полученные асимптоты будут односторонними: левосторонними при и правосторонними при .

5. Найти экстремумы и интервалы монотонности функции.

a. Найти производную .

b. Найти критические точки (те точки, где или где не существует).

c. На числовой оси отметить область определения и ее критические точки.

d. На каждом из полученных числовых интервалов определить знак производной .

e. По знакам производной сделать вывод о наличии экстремумов у и их типе.

f. Найти экстремальные значения .

g. По знакам производной сделать вывод о возрастании и убывании .

6. Найти точки пересечения графика с осями координат и, если это нужно для схематического построения графика, найти дополнительные точки.

a. Для того, чтобы найти точки пересечения графика с осью , надо решить уравнение . Точки , где – нули , будут точками пересечения графика с осью .

b. Точка пересечения графика с осью имеет вид . Она существует, только если точка входит в область определения функции .

8. Схематично построить график.

a. Построить систему координат и асимптоты.

b. Отметить экстремальные точки.

c. Отметить точки пересечения графика с осями координат.

d. Схематично построить график так, чтобы он проходил через отмеченные точки и приближался к асимптотам.

Пример. Исследовать функцию и схематично построить ее график.

2. – функция общего вида.

3. Поскольку и , то прямые и являются вертикальными асимптотами; точки и являются точками разрыва. , при не входит в область определения функции


Очень важную информацию о поведении функции предоставляют промежутки возрастания и убывания. Их нахождение является частью процесса исследования функции и построения графика . К тому же точкам экстремума, в которых происходит смена с возрастания на убывание или с убывания на возрастание, уделяется особое внимание при нахождении наибольшего и наименьшего значения функции на некотором интервале.

В этой статье дадим необходимые определения, сформулируем достаточный признак возрастания и убывания функции на интервале и достаточные условия существования экстремума, применим всю эту теорию к решению примеров и задач.

Навигация по странице.

Возрастание и убывание функции на интервале.

Определение возрастающей функции.

Функция y=f(x) возрастает на интервале X , если для любых и выполняется неравенство . Другими словами – большему значению аргумента соответствует большее значение функции.

Определение убывающей функции.

Функция y=f(x) убывает на интервале X , если для любых и выполняется неравенство . Другими словами – большему значению аргумента соответствует меньшее значение функции.


ЗАМЕЧАНИЕ: если функция определена и непрерывна в концах интервала возрастания или убывания (a;b) , то есть при x=a и x=b , то эти точки включаются в промежуток возрастания или убывания. Это не противоречит определениям возрастающей и убывающей функции на промежутке X .

К примеру, из свойств основных элементарных функций мы знаем, что y=sinx определена и непрерывна для всех действительных значений аргумента. Поэтому, из возрастания функции синуса на интервале мы можем утверждать о возрастании на отрезке .

Точки экстремума, экстремумы функции.

Точку называют точкой максимума функции y=f(x) , если для всех x из ее окрестности справедливо неравенство . Значение функции в точке максимума называют максимумом функции и обозначают .

Точку называют точкой минимума функции y=f(x) , если для всех x из ее окрестности справедливо неравенство . Значение функции в точке минимума называют минимумом функции и обозначают .

Под окрестностью точки понимают интервал , где - достаточно малое положительное число.

Точки минимума и максимума называют точками экстремума , а значения функции, соответствующие точкам экстремума, называют экстремумами функции .

Не путайте экстремумы функции с наибольшим и наименьшим значением функции.


На первом рисунке наибольшее значение функции на отрезке достигается в точке максимума и равно максимуму функции, а на втором рисунке – наибольшее значение функции достигается в точке x=b , которая не является точкой максимума.

Достаточные условия возрастания и убывания функции.

На основании достаточных условий (признаков) возрастания и убывания функции находятся промежутки возрастания и убывания функции.

Вот формулировки признаков возрастания и убывания функции на интервале:

  • если производная функции y=f(x) положительна для любого x из интервала X , то функция возрастает на X ;
  • если производная функции y=f(x) отрицательна для любого x из интервала X , то функция убывает на X .

Таким образом, чтобы определить промежутки возрастания и убывания функции необходимо:

Рассмотрим пример нахождения промежутков возрастания и убывания функции для разъяснения алгоритма.

Пример.

Найти промежутки возрастания и убывания функции .

Решение.

На первом шаге нужно найти область определения функции . В нашем примере выражение в знаменателе не должно обращаться в ноль, следовательно, .

Переходим к нахождению производной функции:

Для определения промежутков возрастания и убывания функции по достаточному признаку решаем неравенства и на области определения. Воспользуемся обобщением метода интервалов. Единственным действительным корнем числителя является x = 2 , а знаменатель обращается в ноль при x=0 . Эти точки разбивают область определения на интервалы, в которых производная функции сохраняет знак. Отметим эти точки на числовой прямой. Плюсами и минусами условно обозначим интервалы, на которых производная положительна или отрицательна. Стрелочки снизу схематично показывают возрастание или убывание функции на соответствующем интервале.

Таким образом, и .

В точке x=2 функция определена и непрерывна, поэтому ее следует добавить и к промежутку возрастания и к промежутку убывания. В точке x=0 функция не определена, поэтому эту точку не включаем в искомые интервалы.

Приводим график функции для сопоставления с ним полученных результатов.

Ответ:

Функция возрастает при , убывает на интервале (0;2] .

Достаточные условия экстремума функции.

Для нахождения максимумов и минимумов функции можно пользоваться любым из трех признаков экстремума, конечно, если функция удовлетворяет их условиям. Самым распространенным и удобным является первый из них.

Первое достаточное условие экстремума.

Пусть функция y=f(x) дифференцируема в -окрестности точки , а в самой точке непрерывна.

Другими словами:

Алгоритм нахождения точек экстремума по первому признаку экстремума функции.

  • Находим область определения функции.
  • Находим производную функции на области определения.
  • Определяем нули числителя, нули знаменателя производной и точки области определения, в которых производная не существует (все перечисленные точки называют точками возможного экстремума , проходя через эти точки, производная как раз может изменять свой знак).
  • Эти точки разбивают область определения функции на промежутки, в которых производная сохраняет знак. Определяем знаки производной на каждом из интервалов (например, вычисляя значение производной функции в любой точке отдельно взятого интервала).
  • Выбираем точки, в которых функция непрерывна и, проходя через которые, производная меняет знак - они и являются точками экстремума.

Слишком много слов, рассмотрим лучше несколько примеров нахождения точек экстремума и экстремумов функции с помощью первого достаточного условия экстремума функции.

Пример.

Найти экстремумы функции .

Решение.

Областью определения функции является все множество действительных чисел, кроме x=2 .

Находим производную:

Нулями числителя являются точки x=-1 и x=5 , знаменатель обращается в ноль при x=2 . Отмечаем эти точки на числовой оси

Определяем знаки производной на каждом интервале, для этого вычислим значение производной в любой из точек каждого интервала, например, в точках x=-2, x=0, x=3 и x=6 .

Следовательно, на интервале производная положительна (на рисунке ставим знак плюс над этим интервалом). Аналогично

Поэтому над вторым интервалом ставим минус, над третьим – минус, над четвертым – плюс.

Осталось выбрать точки, в которых функция непрерывна и ее производная меняет знак. Это и есть точки экстремума.

В точке x=-1 функция непрерывна и производная меняет знак с плюса на минус, следовательно, по первому признаку экстремума, x=-1 – точка максимума, ей соответствуем максимум функции .

В точке x=5 функция непрерывна и производная меняет знак с минуса на плюс, следовательно, x=-1 – точка минимума, ей соответствуем минимум функции .

Графическая иллюстрация.

Ответ:

ОБРАТИТЕ ВНИМАНИЕ: первый достаточный признак экстремума не требует дифференцируемости функции в самой точке .

Пример.

Найдите точки экстремума и экстремумы функции .

Решение.

Областью определения функции является все множество действительных чисел. Саму функцию можно записать в виде:

Найдем производную функции:

В точке x=0 производная не существует, так как значения односторонних пределов при стремлении аргумента к нулю не совпадают:

В это же время, исходная функция является непрерывной в точке x=0 (смотрите раздел исследование функции на непрерывность):

Найдем значения аргумента, при котором производная обращается в ноль:

Отметим все полученные точки на числовой прямой и определим знак производной на каждом из интервалов. Для этого вычислим значения производной в произвольных точках каждого интервала, к примеру, при x=-6, x=-4, x=-1, x=1, x=4, x=6 .

То есть,

Таким образом, по первому признаку экстремума, точками минимума являются , точками максимума являются .

Вычисляем соответствующие минимумы функции

Вычисляем соответствующие максимумы функции

Графическая иллюстрация.

Ответ:

.

Второй признак экстремума функции.

Как видите, этот признак экстремума функции требует существования производной как минимум до второго порядка в точке .

Признаки локального возрастания и убывания функции.

Одна из основных задач исследования функции — это нахождение промежутков ее возрастания и убывания. Такое исследование легко провести с помощью производной. Сформулируем соответствующие утверждения.

Достаточный признак возрастания функции . Если f’(х) > 0 в каждой точке интервала I, то функция f возрастает на I.

Достаточный признак убывания функции . Если f’(х) < 0 в каждой точке интервала I, то функция f убывает на I.

Доказательство этих признаков проводится на основании формулы Лагранжа (см. п. 19). Возьмем два любых числа х 1 и x 2 из интервала. Пусть x 1 существует число с∈(х 1 , x 2 ), такое, что

(1)

Число с принадлежит интервалу I, так как точки х 1 и x 2 принадлежат I. Если f"(x)>0 для х∈I то f’(с)>0, и поэтому F(x 1 )) — это следует из формулы (1), так как x 2 — x 1 >0. Этим доказано возрастание функции f на I. Если же f’ (x)<0 для х∈I то f"(с)<0, и потому f(x 1 )>f (х 2 ) — следует из формулы (1), так как x 2 —x 1 >0. Доказано убывание функции f на I.

Наглядный смысл признаков ясен из физических рассуждений (рассмотрим для определенности признак возрастания).

Пусть движущаяся по оси ординат точка в момент времени t имеет ординату y = f(t). Тогда скорость этой точки в момент времени t равна f"(t) (см. Мгновенная скорость ). Если f’ (t)>0 в каждый момент времени из промежутка t, то точка движется в положительном направлении оси ординат, т. е. если t 1 ). Это означает, что функция f возрастает на промежутке I.

Замечание 1.

Если функция f непрерывна в каком-либо из концов промежутка возрастания (убывания), то эту точку присоединяют к этому промежутку.

Замечание 2.

Для решения неравенств f" (х)>0 и f" (х)<0 удобно пользоваться обобщением метода интервалов (теоремой Дарбу) : точки, в которых производная равна 0 или не существует, разбивают область определения функции f на промежутки, в каждом из которых f" сохраняет постоянный знак. (Этот факт доказывается в курсах математического анализа.) Знак можно определить, вычислив значение f" в какой-нибудь точке промежутка.

Необходимые и достаточные условия существования экстремума функции в точке.

Необходимое условие экстремума

Функция g(x) в точке имеет экстремум(максимум или минимум), если функция определена в двухсторонней окрестности точки и для всех точек x некоторой области: , выполнено соответственно неравенство

(в случае максимума) или (в случае минимума).

Экстремум функции находиться из условия: , если производная существует, т.е. приравниваем первую производную функции к нулю.

Достаточное условие экстремума

1) Первое достаточное условие :

а) f(x) непрерывная функция и определена в некоторой окрестности точки такой, что первая производная в данной точке равна нулю или не существует.

б) f(x) имеет конечную производную в окрестности задания и непрерывности функции

в) производная сохраняет определенный знак справа от точки и слева от этой же точки, тогда точку можно охарактеризовать следующим образом

Это условие не очень удобное, так как нужно проверять множество условий и запоминать таблицу, однако если ничего не сказано о производных высших порядках, то это единственный способ найти экстремум функции.

2) Второе достаточное условие

Если функция g(x) обладает второй производной причем в некоторой точкепервая производная равна нулю, а вторая производная отлично от нуля. Тогда точкаэкстремум функции g(x), причем если , то точка является максимумом; если , то точка является минимумом.

Первый достаточный признак экстремума формулируется на основе изменения знака первой производной при переходе через критическую точку. О втором признаке экстремума речь пойдёт ниже в § 6.4.

Теорема (первый признак экстремума) : Если х 0 – критическая точка функции у= f (x ) и в некоторой окрестности точки х 0 , переходя через неё слева направо, производная меняет знак на противоположный, то х 0 является точкой экстремума. Причём, если знак производной меняется с «+» на «-», то х 0 – точка максимума, а f (x 0 ) – максимум функции, а если производная меняет знак с «-» на «+», то х 0 – точка минимума, а f (x 0 ) – минимум функции.

Рассмотренный экстремум носит локальный (местный) характер и касается некоторой малой окрестности критической точки.

Точки экстремума и точки разрыва делят область определения функции на интервалы монотонности.

Пример 6.3. В примере 6.1. мы нашли критические точки х 1 =0 и х 2 =2.

Выясним, действительно ли в этих точках функция у=2х 3 -6х 2 +1 имеет экстремум. Подставим в её производную
значениях , взятые слева и справа от точки х 1 =0 в достаточно близкой окрестности, например, х=-1 и х=1 . получим . Так как производная меняет знак с «+» на «-», тох 1 =0 – точка максимума, а максимум функции
. Теперь возьмем два значения х=1 их=3 из окрестности другой критической точки х 2 =2 . Уже показано, что
, а
. Так как производная меняет знак с «-» на «+», тох 2 =2 – точка минимума. А минимум функции
.

Чтобы найти наибольшее и наименьшее значение функции непрерывной на отрезке
нужно вычислить её значение во всех критических точках и на концах отрезка, а затем выбрать из них наибольшее и наименьшее
.

6.3. Признаки выпуклости и вогнутости графика функции. Точки перегиба

График дифференцируемой функции называется выпуклым на интервале, если он расположен ниже любой своей касательной на том интервале; вогнутым (выпуклым вниз) , если он расположен выше любой касательной на интервале .

6.3.1. Необходимые и достаточные признаки выпуклости и вогнутости графика

а) Необходимые признаки

Если график функции у= f (x ) выпуклый на интервале (a , b ) , то вторая производная
на этом интервале; если график
вогнутый на (a , b ) , то
на
(a , b ) .

Пусть график функцииу= f (x ) выпуклый (a , b ) (рис.6.3а). Если касательная скользит вдоль выпуклой кривой слева направо, то её угол наклона убывает (
), вместе с тем убывает и угловой коэффициент касательной, а значит, убывает первая производная
на(a , b ) . Но тогда производная первой производной как производная убывающей функции должна быть отрицательной, то есть
на(a , b ) .

Если график функции вогнутый на (a , b ) , то, рассуждая аналогично, видим, что при скольжении касательной вдоль кривой (рис. 6.3б) угол наклона касательной возрастает (
), возрастает вместе с ним и угловой коэффициент, а значит и производная. И тогда производная от производной как возрастающей функции должна быть положительной, то есть
на(a , b ) .

б) Достаточные признаки

Если для функции у= f (x ) во всех точках некоторого интервала будет
, то график функции
вогнутый на этом интервале, а если
, то
выпуклый .

«Правило дождя» : Чтобы запомнить какой знак второй производной связывать с выпуклой, а какой с вогнутой дугой графика, рекомендуем запомнить: «плюс вода» в вогнутой луночке, «минус вода» - в выпуклой луночке (рис. 6.4).

Точка графика непрерывной функции, в которой изменяется выпуклость на вогнутость или наоборот, называется точкой перегиба .

Теорема (достаточный признак существования точки перегиба).

Если в точке функция
дважды дифференцируема и вторая производная в этой точке равна нулю или не существует, и если при переходе через точкувторая производная
меняет знак, то точкаесть точка перегиба. Координаты точки перегиба
.

Точки, в которых вторая производная обращается в нуль или не существует, называются критическими точками второго рода.

Пример 6.4. Найти точки перегиба и определить интервалы выпуклости и вогнутости кривой
(кривая Гаусса).

Решение. Находим первую и вторую производные:
,. Вторая производная существует при любых. Приравниваем ее нулю и решим полученное уравнение
, где
, тогда
, откуда
,
- критические точки второго рода. Проверим смену знака второй производной при переходе через критическую точку
. Если
, например,
, то
, а если
, например,
, то
, то есть, вторая производная меняет знак. Следовательно,
- абсцисса точки перегиба, ее координаты
. Ввиду четности функции
, точка
, симметричная точке
, тоже будет точкой перегиба.

Для нахождения максимумов и минимумов функции можно пользоваться любым из трех достаточных признаков экстремума. Хотя самым распространенным и удобным является первый из них.

Первое достаточное условие экстремума.

Пусть функция y = f(x) дифференцируема в -окрестности точки , а в самой точке непрерывна. Тогда

Другими словами:

Алгоритм.

  • Находим область определения функции.

Находим производную функции на области определения.

Определяем нули числителя, нули знаменателя производной и точки области определения, в которых производная не существует (эти точки называют точками возможного экстремума , проходя через эти точки, производная как раз может изменять свой знак).

Эти точки разбивают область определения функции на промежутки, в которых производная сохраняет знак. Определяем знаки производной на каждом из интервалов (например, вычисляя значение производной функции в любой точке отдельно взятого интервала).

Выбираем точки, в которых функция непрерывна и, проходя через которые, производная меняет знак.

Пример. Найти экстремумы функции .
Решение.
Областью определения функции является все множество действительных чисел, кроме x = 2 .
Находим производную:

Нулями числителя являются точки x = -1 и x = 5 , знаменатель обращается в ноль при x = 2 . Отмечаем эти точки на числовой оси

Определяем знаки производной на каждом интервале, для этого вычислим значение производной в любой из точек каждого интервала, например, в точках x = -2, x = 0, x = 3 и x = 6 .

Следовательно, на интервале производная положительна (на рисунке ставим знак плюс над этим интервалом). Аналогично

Поэтому над вторым интервалом ставим минус, над третьим – минус, над четвертым – плюс.

Осталось выбрать точки, в которых функция непрерывна и ее производная меняет знак. Это и есть точки экстремума.
В точке x = -1 функция непрерывна и производная меняет знак с плюса на минус, следовательно, по первому признаку экстремума, x = -1 – точка максимума, ей соответствуем максимум функции .
В точке x = 5 функция непрерывна и производная меняет знак с минуса на плюс, следовательно, x = -1 – точка минимума, ей соответствуем минимум функции .
Графическая иллюстрация.

Ответ: .

Второй достаточный признак экстремума функции.
Пусть ,

если , то - точка минимума;

если , то - точка максимума.

Как видите, этот признак требует существования производной как минимум до второго порядка в точке .
Пример. Найти экстремумы функции .
Решение.
Начнем с области определения:

Продифференцируем исходную функцию:

Производная обращается в ноль при x = 1 , то есть, это точка возможного экстремума.
Находим вторую производную функции и вычисляем ее значение при x = 1 :Причем,



Что еще почитать