Хроматическая дисперсия состоит из составляющих. Хроматическая дисперсия ов, причины ее появления. Межмодовая дисперсия и полоса пропускания

3.3 ОПТИЧЕСКОЕ ВОЛОКНО

Можно выделить четыре основные явления в оптическом волокне, ограничивающие характеристики систем WDM - это хроматическая дисперсия, поляризационная модовая дисперсия первого и второго порядка и нелинейные оптические эффекты.

3.3.1 Хроматическая дисперсия

Важной оптической характеристикой стекла, используемого при изготовления волокна, является дисперсия показателя преломления, проявляющаяся в зависимости скорости распространения сигнала от длины волны - материальная дисперсия. Кроме этого, при производстве одномодового волокна, когда кварцевая нить вытягивается из стеклянной заготовки, в той или иной степени возникают отклонения в геометрии волокна и в радиальном профиле показателя преломления. Сама геометрия волокна вместе с отклонениями от идеального профиля также вносит существенный вклад в зависимость скорости распространения сигнала от длины волны, это - волноводная дисперсия.

Совместное влияние материальной и волноводной дисперсий называют хроматической дисперсией волокна, рис. 3.16.

Рис.3.16 Зависимость хроматической дисперсии от длины волны

Явление хроматической дисперсии ослабевает по мере уменьшения спектральной ширины излучения лазера. Даже если бы можно было использовать идеальный источник монохроматического излучения с нулевую шириной линии генерации, то после модуляции информационным сигналом произошло бы спектральное уширение сигнал, и тем больше уширение, чем больше скорость модуляции. Есть и другие факторы, приводящие к спектральному уширению излучения, из которых можно выделить чирпирование источника излучения.

Таким образом, исходный канал представлен не единственной длиной волны, а группой длин волн в узком спектральном диапазоне - волновым пакетом. Так как различные длины волн распространяются с разными скоростями (или точнее, с разными групповыми скоростями), то оптический импульс, имеющий на входе линии связи строго прямоугольную форму, по мере прохождения по волокну будет становиться все шире и шире. При большом времени распространения в волокне этот импульс может смешаться с соседними импульсами, затрудняя точное их восстановление. С увеличением скорости передачи и длины линии связи влияние хроматической дисперсии возрастает.

Хроматическая дисперсия, как уже говорилось, зависит от материальной и волноводной составляющих. При некоторой длине волны λ o хроматическая дисперсия обращается в ноль - эту длину волны называют длиной волны нулевой дисперсии.

Одномодовое кварцевое волокно со ступенчатым профилем показателя преломления обладает нулевой дисперсией на длине волны 1310 нм. Такое волокно часто называют волокном с несмещенной дисперсией.

Волноводная дисперсия в первую очередь определяется профилем показателя преломления сердцевины волокна и внутренней оболочки. В волокне со сложным профилем показателя преломления, изменяя соотношение между дисперсией среды и дисперсией волновода, можно не только сместить длину волны нулевой дисперсию, но и подобрать нужную форму дисперсионной характеристики, т.е. форму зависимости дисперсии от длины волны.

Форма дисперсионной характеристики является ключевой для систем WDM, в особенности, по волокну со смещенной дисперсией (Рек. ITU-T G.653).

Кроме параметра λ o используют параметр S o , описывающий наклон дисперсионной характеристики на длине волны λ o , рис. 3.17. В общем случае, наклон на других длинах волн отличается от наклона при длине волны λ o . Текущее значение наклона S o определяет линейную составляющую дисперсии в окрестности λ o .

Рис. 3.17 Основные параметры зависимости хроматической дисперсии от длины волны: λ o - длина волны нулевой дисперсии и S o - наклон дисперсионной характеристики в точке нулевой дисперсии

Хроматическую дисперсию τ chr (обычно измеряется в пс) можно рассчитать по формуле

τ chr = D(λ) · Δτ · L ,

где D(λ) - коэффициент хроматической дисперсии (пс/(нм*км)) , а L - протяженность линии связи (км). Заметим, что данная формула не точна в случае ультра узкополосных источников излучения.

На рис. 3.18 раздельно показаны зависимости волноводной дисперсии для волокна с несмещенной (1) и смещенной (2) дисперсией и материальной дисперсии от длины волны.

Рис. 3.18 Зависимость дисперсии от длины волны (хроматическая дисперсия определяется как сумма материальной и волноводной дисперсий.)

Хроматическая дисперсия системы передачи чувствительна к:
увеличению длины и числа участков линии связи;
увеличению скорости передачи (т.к. увеличивается эффективная ширина линии генерации источника).

На нее в меньшей степени влияют:
уменьшение частотного интервала между каналами;
увеличение числа каналов.

Хроматическая дисперсия уменьшается при:
уменьшении абсолютного значения хроматической дисперсии волокна;
компенсации дисперсии.

В системах WDM с обычным стандартным волокном (Рек. ITU-T G.652) хроматической дисперсии следует уделять особое внимание, так как она велика в области длины волны 1550 нм.

По оптическому волокну передается не просто световая энергия, но также полезный информационный сигнал. Импульсы света, последовательность которых определяет информационный поток, в процессе распространения расплываются. При достаточно большом уширении импульсы начинают перекрываться, так что становится невозможным их выделение при приеме.

Дисперсия - уширение импульсов - имеет размерность времени и определяется как квадратичная разность длительностей импульсов на выходе и входе кабеля длины L по формуле . Обычно дисперсия нормируется в расчете на 1км, и измеряется в пс/км. Дисперсия в общем случае характеризуется тремя основными факторами, рассматриваемыми ниже:

  • различием скоростей распространения направляемых мод (межмодовой дисперсией tmod)
  • направляющими свойствами световодной структуры (волноводной дисперсией tw)
  • свойствами материала оптического волокна (материальной дисперсией tmat)

Чем меньше значение дисперсии, тем больший поток информации можно передать по волокну.

Межмодовая дисперсия и полоса пропускания

Межмодовая дисперсия возникает вследствие различной скорости распространения у мод, и имеет место только в многомодовом волокне. Для ступенчатого многомодового волокна и градиентного многомодового волокна с параболическим профилем показателя преломления ее можно вычислить соответственно по формулам:

где L - длина межмодовой связи (для ступенчатого волокна порядка 5 км, для градиентного - порядка 10 км).

Изменение закона дисперсии с линейного на квадратичный связано с неоднородностями, которые есть в реальном волокне. Эти неоднородности приводят к взаимодействию между модами, и перераспределению энергии внутри них. При L > Lc наступает установившийся режим, когда все моды в определенной установившейся пропорции присутствуют в излучении. Обычно длины линий связи между активными устройствами при использовании многомодового волокна не превосходят 2 км и значительно меньше длины межмодовой связи. Поэтому можно пользоваться линейным законом дисперсии.

Вследствие квадратичной зависимости от D значения межмодовой дисперсии у градиентного волокна значительно меньше, чем у ступенчатого, что делает более предпочтительным использование градиентного многомодового волокна в линиях связи.

На практике, особенно при описании многомодового волокна, чаще пользуются термином полоса пропускания. При расчете полосы пропускания W можно пользоваться формулой: W = 0,44 / t

Измеряется полоса пропускания в МГц*км. Из определения полосы пропускания видно, что дисперсия накладывает ограничения на дальность передачи и верхнюю частоту передаваемых сигналов. Физический смысл W - это максимальная частота модуляции передаваемого сигнала при длине линии 1 км. Если дисперсия линейно растет с ростом расстояния, то полоса пропускания обратно пропорционально зависит от расстояния.

Хроматическая дисперсия

Хроматическая дисперсия состоит из материальной и волноводной составляющих и имеет место при распространении как в одномодовом, так и в многомодовом волокне. Однако наиболее отчетливо она проявляется в одномодовом волокне, в виду отсутствия межмодовой дисперсии.

Материальная дисперсия обусловлена зависимостью показателя преломления волокна от длины волны. В выражение для дисперсии одномодового волокна входит дифференциальная зависимость показателя преломления от длины волны.

Волноводная дисперсия обусловлена зависимостью коэффициента распространения моды от длины волны.

где введены коэффициенты M(l) и N(l) - удельные материальная и волноводная дисперсии соответственно, а Dl (нм) - уширение длины волны вследствие некогерентности источника излучения. Результирующее значение коэффициента удельной хроматической дисперсии определяется как D(l) = M(l) + N(l). Удельная дисперсия имеет размерность пс/(нм*км). Если коэффициент волноводной дисперсии всегда больше нуля, то коэффициент материальной дисперсии может быть как положительным, так и отрицательным. И здесь важным является то, что при определенной длине волны (примерно 1310 ± 10 нм для ступенчатого одномодового волокна) происходит взаимная компенсация M(l) и N(l), а результирующая дисперсия D(l) обращается в нуль. Длина волны, при которой это происходит, называется длиной волны нулевой дисперсии l. Обычно указывается некоторый диапазон длин волн, в пределах которых может варьироваться l для данного конкретного волокна. Фирма Corning использует следующий метод определения удельной хроматической дисперсии. Измеряются задержки по времени при распространении коротких импульсов света в волокне длиной не меньше 1 км. После получения выборки данных для нескольких длин волн из диапазона интерполяции (800-1600 нм для MMF, 1200-1600 нм для SF и DSF), делается повторная выборка измерения задержек на тех же длинах волн, но только на коротком эталонном волокне (длина 2м). Времена задержек, полученных на нем, вычитаются из соответствующих времен, полученных на длинном волокне, чтобы устранить систематическую составляющую ошибки.

Хроматическая дисперсия вычисляется по формуле:

Кривые временных задержек и удельных хроматических дисперсий для:

а) многомодового градиентного волокна (62,5/125)

б) одномодового ступенчатого волокна (SF)

в) одномодового волокна со смещенной дисперсией (DSF)

Поляризационная модовая дисперсия

Поляризационная модовая дисперсия tpmd (polarization mode dispersion) возникает вследствие различной скорости распространения двух взаимно перпендикулярных поляризационных составляющих моды. Коэффициент удельной дисперсии T нормируется в расчете на 1 км и имеет размерность (пс/км1/2), а tpmd растет с расстоянием по закону tpmd=T·L1/2. Для учета вклада в результирующую дисперсию следует добавить слагаемое t2pmd в правую часть (2-13). Из-за небольшой величины tpmd может проявляться исключительно в одномодовом волокне, причем когда используется передача широкополосного сигнала (полоса пропускания 2,4 Гбит/c и выше) с очень узкой спектральной полосой излучения 0,1 нм и меньше. В этом случае хроматическая дисперсия становится сравнимой с поляризационной модовой дисперсией.

В одномодовом волокне в действительности может распространяться не одна мода, а две фундаментальные моды - две перпендикулярные поляризации исходного сигнала. В идеальном волокне, в котором отсутствуют неоднородности по геометрии, две моды распространялись бы с одной и той же скоростью, рис. а. Однако на практике волокна имеют не идеальную геометрию, что приводит к различной скорости распространения двух поляризационных составляющих мод, рис. б.

Избыточный уровень tpmd, проявляясь вместе с чирпированным модулированным сигналом от лазера, а также поляризационной зависимостью потерь, может приводить к временным колебаниям амплитуды аналогового видеосигнала. В результате ухудшается качество изображения, или появляются диагональные полосы на телевизионном экране. При передаче цифрового сигнала высокой полосы (>2,4 Гбит/с) из-за наличия tpmd может возрастать битовая скорость появления ошибок.

Главной причиной возникновения поляризационной модовой дисперсии является некруглость (овальность) профиля сердцевины одномодового волокна, возникающая в процессе изготовления или эксплуатации волокна. При изготовлении волокна только строгий контроль позволяет достичь низких значений этого параметра.

Учет дисперсии при расчете ВОСП

Для того, чтобы при передаче сигнала сохранялось его приемлемое качество - соотношение сигнал/шум было не ниже определенного значения - необходимо, чтобы полоса пропускания волокна на длине волны передачи превосходила частоту модуляции. Ниже приводятся примеры расчета допустимой длины сегмента с использованием табл.

Пример 2.1. Стандарт Ethernet для многомодового волокна.

Оптический интерфейс 10Base-FL предполагает манчестерское кодирование с частотой модуляции 20 МГц. При использовании светодиодов с D l = 35 нм (850 нм) удельная полоса пропускания для волокна 50/125 составляет 125 МГц*км и при длине оптического сегмента 4 км будет 31 МГц, что больше 20 МГц. То есть с точки зрения дисперсии протяженность в 4 км является допустимой при указанной характеристике оптического передатчика и при данном типе волокна. Однако по затуханию, которое на этой длине волны составляет 3 дБ/км, динамического диапазона у стандартных приемопередатчиков на это расстояние может не хватить. Стандартом Ethernet 10Base-FL установлено допустимое расстояние 2 км, с учетом менее строгих требований как к характеристикам кабельной системы (например, волокно 62,5/125, наличие нескольких сухих соединительных стыков), так и к оптическим приемопередатчикам - оптическим трансиверам Ethernet (например D l = 50 нм).

Пример 2.2. Стандарт FDDI для многомодового волокна.

Оптический интерфейс FDDI PMD предполагает кодировку 4B5B с частотой модуляции 125 МГц. При использовании светодиодов с D l = 35 нм (1310 нм) удельная полоса пропускания для волокна 62,5/125 составляет 450 МГц*км, и при длине оптического сегмента 2 км будет 225 МГц, что больше 125 МГц, то есть с точки зрения дисперсии протяженность в 2 км является допустимой, что находится в полном соответствии со стандартом FDDI PMD на многомодовое волокно.

Слабая зависимость полосы пропускания многомодового волокна (например 62,5/125) от спектральной ширины источника излучения, работающего на длине волны 1310 нм, (450 МГц*км при D l = 35 нм, и 452 МГц*км при D l = 2 нм) объясняется незначительной долей хроматической дисперсии по сравнению с межмодовой в силу близости рабочей длины волны к длине волны нулевой дисперсии. Таким образом, технические требования к спектральной полосе оптических передатчиков для работы по многомодовому волокну на длине 1310 нм обычно слабые.

Пример 2.3. Стандарт Fast Ethernet для одномодового волокна.

Оптический интерфейс 100Base-FX аналогично FDDI предполагает кодировку 4B5B с частотой модуляции 125 МГц. При использовании лазеров с D l = 2 нм (1310 нм) удельная полоса пропускания для ступенчатого одномодового волокна 8/125 составляет более 120000 МГц*км и при длине оптического сегмента 100 км будет 1200 МГц, что больше 125 МГц. То есть с точки зрения дисперсии протяженность в 100 км является допустимой, однако здесь уже начинает сказываться затухание. При динамическом диапазоне 25 дБ с учетом потерь на сухих соединениях и сварках при затухании в волокне 0,4 дБ/км получаем максимальное расстояние 62,5 км.

Уменьшить потери можно, если передавать сигнал на длине волны 1550 нм. По потерям при прежнем динамическом диапазоне 25 дБ и при условии, что волокно имеет затухание 0,25 дБ/км, получаем расстояние 100 км. По дисперсии при использовании лазеров с D l = 2 нм (1310 нм) удельная полоса пропускания для ступенчатого одномодового волокна 8/125 составляет 12600 МГц*км. В итоге на дистанции 100 км полоса пропускания будет 126 МГц, что сравнимо с частотой модуляции Fast Ethernet. Это не очень надежно. При фиксированной спектральной полосе D l = 2 нм затруднения можно снять, если использовать для передачи волокно со смещенной дисперсией DSF. Если же кабельная система представлена исключительно одномодовыми волокнами со ступенчатым профилем (SF), то следует использовать оптические передатчики с более узкой спектральной полосой, например D l = 1 нм.

Пример 2.4. Стандарт ATM 622 Мбит/c (STM-4) для одномодового волокна.

Оптический интерфейс ATM 622 Мбит/c использует кодировку 8B10B, что соответствует частоте модуляции 778 МГц. При использовании лазера с D l = 0,1 нм (1550 нм) с удельная полоса пропускания для ступенчатого одномодового волокна 8/125 составляет 252000 МГц*км (12600 x 20). При длине оптического сегмента 100 км будет 2520 МГц, что значительно больше 778 МГц. То есть с точки зрения дисперсии, при использовании лазера с D l = 0,1 нм (1550 нм) протяженность в 100 км является допустимой даже если применяется стандартное ступенчатое волокно.

Пример 2.5. Передача супер-сигнала на частоте 100 ГГц по одномодовому волокну со смещенной дисперсией DSF.

При использовании лазеров с tchr = 0,1 нм (1550 нм) удельная полоса пропускания для DSF 8/125 составляет более 2400 ГГц*км (20 x 120000 МГц*км) и при длине оптического сегмента 20 км будет 120 ГГц, что незначительно превосходит 100 ГГц. То есть с точки зрения дисперсии, протяженность сегмента в 20 км находится на грани предельного допустимого расстояния. Именно поэтому оптические супер-сети со скоростью передачи на канал 100 Гбит/с имеют ограниченный масштаб, например масштаб города. Пример 2.6. Сравнение влияния хроматической и поляризационной модовой дисперсии

Оценить расстояние L0, при котором хроматическая tchr и поляризационная модовая дисперсии tpmd сравниваются по величине, если коэффициент хроматической дисперсии D=2 пс/(нм*км), коэффициент поляризационной модовой дисперсии Т= 0,5 пс/км1/2, а ширина спектрального излучения D l=0,05 нм.

Приравнивая выражения tchr=D·D l·L и tpmd=T·L1/2, находим L0 = (T/DDl)2 = 25 км. Если при L>L0 поляризационной модовой дисперсией можно пренебречь, то при L100 Гбит/c) городского масштаба. Пример 2.7. Влияние PMD на высокоскоростные потоки

Оценить максимальное допустимое расстояние оптического сегмента Lmax, на которое можно передать одноканальный сигнал с частотой W=100 ГГц без ретрансляции, исходя из ограничений, вносимых поляризационной модовой дисперсией, если коэффициент поляризационной модовой дисперсии Т= 1 пс/км1/2.

На основании соотношения (2-17) получаем: tpmd=T·L1/2 < 0,44/W. Отсюда Lmax = (0,44/WT)2 = (0,44/(100·109·10-12))2 ~ 19 км. При Т= 0,5 пс/км1/2 расстояние возрастает до 77 км. Ведущие фирмы-производителя волокна обеспечивают выходной параметр поляризационной модовой дисперсии не выше 0,5. Однако, следует учитывать, что после инсталляции кабельной системы значение этого параметра возрастает.

Хроматическая дисперсия состоит из материальной и волноводной составляющих и имеет место при распространении как в одномодовом, так и в многомодовом волокне. Однако наиболее отчетливо она проявляется в одномодовом волокне из-за отсутствия межмодовой дисперсии.

Материальная дисперсия обусловлена зависимостью показателя преломления волокна от длины волны. В выражение для дисперсии одномодового волокна входит дифференциаль­ная зависимость показателя преломления от длины волны:

Волноводная дисперсия обусловлена зависимостью коэффициента распространения моды от длины волны

где введены коэффициенты М(λ) и N (λ) – удельные материальная и волноводная дисперсии соответственно, а Δλ , (нм) – уширение длины волны вследствие некогерентности источника излучения. Результирующее значение коэффициента удельной хроматической дисперсии определяется как D (λ) = М(λ) + N (λ) . Удельная дисперсия имеет размерность пс/(нм·км). Если коэффициент волноводной дисперсии всегда больше нуля, то коэффициент материальной дисперсии может быть как положительным, так и отрицательным. И здесь важным является то, что при определенной длине волны (примерно 1310 ± 10 нм для ступенчатого одномодового волокна) происходит взаимная компенсация М(λ) и В(λ) , а результирующая дис персия D (λ) обращается в ноль. Длина волны, при которой это происходит, называется дли ной волны нулевой дисперсии λ0 . Обычно указывается некоторый диапазон длин волн, в пре­делах которых может варьироваться λ0 для данного конкретного волокна.

Фирма Corning использует следующий метод определения удельной хроматической дисперсии. Измеряются задержки по времени при распространении коротких импульсов све­та в волокне длиной" не меньше 1 км. После получения выборки данных для нескольких длин волн из диапазона интерполяции (800-1600 нм для MMF, 1200-1600 нм для SF и DSF) делает­ся повторная выборка измерения задержек на тех же длинах волн, но только на коротком эта­лонном волокне (длина 2 м). Времена задержек, полученных на нем, вычитаются из соответ­ствующих времен, полученных на длинном волокне.



Для одномодового ступенчатого и многомодового градиентного волокна используется эмпирическая формула Селмейера: τ(λ) = А + Вλ2 + С λ-2 . Коэффициенты А, В, С являются подгоночными, и выбираются так, чтобы экспериментальные точки лучше ложились на кривую τ(λ) , рисунок 7. Тогда удельная хроматическая дисперсия вычисляется по формуле:

Рисунок 7 – Кривые временных задержек и удельных хроматических дисперсий для: а) многомодового градиентного волокна (62,5/125);

б) одномодового ступенчатого волокна (SF);

в) одномодового волокна со смещенной дисперсией (DSF)

Поляризационная модовая дисперсия

Поляризационная модовая дисперсия τ pmd – возникает вследствие различной скорости распространения двух взаимно перпендикулярных поляризационных составляющих моды. Коэффициент удельной дисперсии Тнормируется в расчете на 1 км и имеет размерность (пс / ), aτ pmd растет с ростом расстояния по закону . Для учета вклада в результирующую дисперсию следует добавить слагаемое в правую часть (15). Из-за небольшой величины τpmd может проявляться исключительно в одномодовом волокне, причем когда используется передача широкополосного сигнала (полоса пропускания 2,4 Гбит/с и выше) с очень узкой спектральной полосой излучения 0,1 нм и меньше. В этом случае хроматическая дисперсия становится сравнимой с поляризационной модовой дисперсией.

В одномодовом волокне в действительности может распространяться не одна мода, а две фундаментальные моды – две перпендикулярные поляризации исходного сигнала. В идеальном волокне, в котором отсутствуют неоднородности по геометрии, две моды распространялись бы с одной и той же скоростью, рисунок 8 а. Однако на практике волокна имеют не идеальную геометрию, что приводит к различной скорости распространения двух поляризационных составляющих мод, рисунок 8 б.


Рисунок 8 – Появление поляризационной модовой дисперсии.

Избыточный уровень τ pmd , проявляясь вместе с чирпированным модулированным сигналом от лазера, а также поляризационной зависимостью потерь, может приводить к временным колебаниям амплитуды аналогового видеосигнала. В результате ухудшается качество изображения, или появляются диагональные полосы на телевизионном экране. При передаче цифрового сигнала высокой полосы (>2,4 Гбит/с) из-за наличия τ pmd может возрастать битовая скорость появления ошибок.

Главной причиной возникновения поляризационной модовой дисперсии является нециркулярность (овальность) профиля сердцевины одномодового волокна, возникающая в процессе изготовления или эксплуатации волокна. При изготовлении волокна только строгий контроль позволяет достичь низких значений этого параметра.

Ход работы:

РАСЧЕТ ПАРАМЕТРОВ ОПТИЧЕСКОГО ВОЛОКНА SM - 9/125 ФИРМЫ LUCENT TECHNOLOGIES

2.1 Расчет геометрических параметров оптоволокна

Числовую апертуру волокна рассчитаем по формуле (5). Подставив значения n 1 =1,466 , Δ=0,33 % , получим:

Таким образом, на длине волны 1310 нм (в соответствии с соотношением (8)) в волокне может существовать многомодовый режим, но, как уже говорилось выше, неосновные моды быстрее затухают и при помещении волокна в кабель, который при прокладке будет испытывать изгибы, неосновные моды вырождаются и в волокне будет одномодовый режим.

2.2 Определение длины волны отсечки

Как уже говорилось выше, различают волоконную и кабельную длину волны отсечки. Кабельная определяется экспериментально. Рассчитаем волоконную длину волны отсечки из выражения (12).

Учитывая, что кабельная длина волны отсечки смещена относительно волоконной в сторону более коротких длин волн, это еще раз подтверждает, что на длине волны 1310 нм в волокне, помещенном в кабель будет одномодовый режим.

2.3 Определение затухания в оптоволокне

Как уже писалось выше затухание в волокне складывается из собственных и кабельных потерь. Собственные потери определим из графика на рисунке 5.

Тогда кабельные потери можно определить, как

Общее затухание в волокне составит

Как видно из графика (рисунок 5) наименьшего значения этого показателя можно добиться при работе на длине волны 1550 нм.

2.4 Определение дисперсии и полосы пропускания волокна

Для одномодового режима модовая составляющая дисперсии обращается в 0 . Кроме того, как видно из рисунка 7 б, хроматическая дисперсия в окне прозрачности 1310 нм тоже равна 0 . Таким образом, в этом режиме в волокне будет присутствовать только поляризационная модовая дисперсия. Исходя из технических характеристик оптоволокна коэффициент поляризационной модовой дисперсии составляет Т=0,2 пс/√км. Тогда при расчете на L =100 км длины волокна, получим

Гц

С учетом того, что по техническим характеристикам оптоволокна коэффициент поляризационной модовой дисперсии не превышает значения 0,2 пс/√км, величина W =220 ГГц является минимальной полосой пропускания на расстоянии 100 км.

Название, цель работы

Расчет параметров в соответствии с вариантом

Ответы на контрольные вопросы

Контрольные вопросы:

1. Виды одномодовых волокон

2. Факторы, влияющие на распространение света

3. Потери на рассеянии

Важным параметром оптического волокна является дисперсия, которая определяет его информационную пропускную способность.

По оптическому волокну передается не просто световая энергия, но также полезный информационный сигнал. Импульсы света, последовательность которых определяет информационный поток, в процессе распространения расплываются. При достаточно большом уширении импульсы начинают перекрываться, так что становится невозможным их выделение при приеме (рисунок 3).

Рисунок 3 - Влияние дисперсии

Дисперсия -- это рассеивание во времени спектральных или модовых составляющих оптического сигнала, которое приводит к увеличению длительности импульса оптического излучения при распространении его по ОВ и определяется разностью квадратов длительностей импульсов на выходе и входе 0В:

Чем меньше значение дисперсии, тем больший поток информации можно передать по волокну. Дисперсия не только ограничивает частотный диапазон ОВ, но существенно снижает дальность передачи сигналов, так как чем длиннее линия, тем больше увеличение длительности импульсов.

Дисперсия в общем случае определяется тремя основными факторами:

Различием скоростей распространения направляемых мод (межмодовой дисперсией),

Направляющими свойствами оптического волокна (волноводной дисперсией),

Параметрами материала, из которого оно изготовлено (материальной дисперсией).


Рисунок 4 - Виды дисперсии

Основными причинами возникновения дисперсии являются, с одной стороны, большое число мод в ОВ (межмодовая дисперсия), а с другой стороны - некогерентность источников излучения, реально работающих в спектре длин волн (хроматическая дисперсия).

Межмодовая дисперсия

Она преобладает в многомодовых ОВ и обусловлена отличием времени прохождения мод по ОВ от его входа до выхода. Для ОВ со ступенчатым профилем показателя преломления скорость распространения электромагнитных волн с длиной волны одинакова для всех мод.Различие путей распространения направляемых мод на фиксированной частоте (длине волны) излучения оптического источника приводит к тому, что время прохождения этих мод по ОВ различно. В результате образуемый ими импульс на выходе ОВ уширяется. Величина уширения импульса равна разности времени распространения самой медленной и самой быстрой мод. Указанное явление носит название межмодовой дисперсии.

Формулу расчета межмодовой дисперсии можно получить, рассматривая геометрическую модель распространения направляемых мод в ОВ. Любая направляемая мода в ступенчатом ОВ может быть представлена световым лучом, который при движении вдоль волокна многократно испытывает полное внутреннее отражение от поверхности раздела «сердцевина-оболочка». Исключением является основная мода НЕ 11 , которая описывается световым лучом, движущимся без отражения вдоль оси волокна.

При длине ОВ, равной L, длина зигзагообразного пути, пройденного лучом света, распространяющимся под углом и z к оси волокна, составляет L/cos и z (рисунок 5).


Рисунок 5 - Пути распространения световых лучей в двухслойном ОВ

Скорость распространения электромагнитных волн с длиной волны л одинакова в рассматриваемом волокне и равна:

где с - скорость света, км/с.

Обычно в ОВ n 1 ? n 2 , поэтому принимает вид:

где - относительное значение показателей преломления сердцевина-оболочка.

Из формулы видно, что уширение импульсов, обусловленное межмодовой дисперсией, тем меньше, чем меньше разность показателей преломления сердцевины и оболочки. Это одна из причин, почему в реальных ступенчатых ОВ эту разность стремятся сделать как можно меньше.

На практике же из-за наличия неоднородностей (главным образом, микроизгибов) отдельные моды при прохождении по ОВ воздействуют друг на друга и обмениваются энергией.

Межмодовую дисперсию в ступенчатых ОВ можно полностью исключить, если соответствующим образом подобрать структурные параметры ОВ. Так, если сделать размеры сердцевины и? настолько малыми, то по волокну будет распространяться на несущей длине волны только одна мода, т. е. модовая дисперсия будет отсутствовать. Такие волокна называются одномодовыми. Они имеют наибольшую пропускную способность. С их помощью могут быть организованы большие пучки каналов на магистралях связи.

Дисперсия импульсов может быть также существенно уменьшена за счет соответствующего выбора профиля преломления по сечению сердцевины ОВ. Так, дисперсия уменьшается при переходе к градиентным ОВ. Межмодовая дисперсия градиентных ОВ, как правило, ниже на порядок и более чем у ступенчатых волокон .

В таких градиентных ОВ в противоположность ОВ со ступенчатым профилем распространения, лучи света распространяются уже не зигзагообразно, а по волно- или винтообразным спиральным траекториям.

Хроматическая дисперсия состоит из материальной и волноводной составляющих и имеет место при распространении как в одномодовом, так и в многомодовом волокне. Однако наиболее отчетливо она проявляется в одномодовом волокне, в виду отсутствия межмодовой дисперсии.

Материальная дисперсия обусловлена зависимостью показателя преломления волокна от длины волны. В выражение для дисперсии одномодового волокна входит дифференциальная зависимость показателя преломления от длины волны.

Волноводная дисперсия обусловлена зависимостью коэффициента распространения моды от длины волны

где введены коэффициенты M(l) и N(l) - удельные материальная и волноводная дисперсии соответственно, а Dl (нм) - уширение длины волны вследствие некогерентности источника излучения. Результирующее значение коэффициента удельной хроматической дисперсии определяется как D(l) = M(l) + N(l). Удельная дисперсия имеет размерность пс/(нм*км). Если коэффициент волноводной дисперсии всегда больше нуля, то коэффициент материальной дисперсии может быть как положительным, так и отрицательным. И здесь важным является то, что при определенной длине волны (примерно 1310 ± 10 нм для ступенчатого одномодового волокна) происходит взаимная компенсация M(l) и N(l), а результирующая дисперсия D(l) обращается в нуль. Длина волны, при которой это происходит, называется длиной волны нулевой дисперсии l 0 . Обычно указывается некоторый диапазон длин волн, в пределах которых может варьироваться l 0 для данного конкретного волокна.

Фирма Corning использует следующий метод определения удельной хроматической дисперсии. Измеряются задержки по времени при распространении коротких импульсов света в волокне длиной не меньше 1 км. После получения выборки данных для нескольких длин волн из диапазона интерполяции (800-1600 нм для MMF, 1200-1600 нм для SF и DSF), делается повторная выборка измерения задержек на тех же длинах волн, но только на коротком эталонном волокне (длина 2 м). Времена задержек, полученных на нем, вычитаются из соответствующих времен, полученных на длинном волокне, чтобы устранить систематическую составляющую ошибки.

Для одномодового ступенчатого и многомодового градиентного волокна используется эмпирическая формула Селмейера (Sellmeier, ): t (l) = A + Bl 2 + Cl -2 . Коэффициенты A, B, C являются подгоночными, и выбираются так, чтобы экспериментальные точки лучше ложились на кривую t (l). Тогда удельная хроматическая дисперсия вычисляется по формуле:

где l 0 = (C/B) 1/4 - длина волны нулевой дисперсии (zero dispersion wavelength), новый параметр S 0 = 8B - наклон нулевой дисперсии (zero dispersion slope, его размерность пс/(нм 2 *км)), а l - рабочая длина волны, для которой определяется удельная хроматическая дисперсия.

а) многомодового градиентного волокна (62,5/125)

б) одномодового ступенчатого волокна (SF)

в) одномодового волокна со смещенной дисперсией (DSF)

Рис. 1.2

Для волокна со смещенной дисперсией эмпирическая формула временных задержек записывается в виде t (l) = A + Bl + Cl lnl, а соответствующая удельная дисперсия определяется как

со значениями параметров l 0 = e -(1+B/C) и S 0 = C/l 0 , где l - рабочая длина волны, l 0 - длина волны нулевой дисперсии, и S 0 - наклон нулевой дисперсии.

Хроматическая дисперсия связана с удельной хроматической дисперсией простым соотношением t chr (l) = D(l)·Dl, где Dl - ширина спектра излучения источника. К уменьшению хроматической дисперсии ведет использование более когерентных источников излучения, например лазерных передатчиков (Dl ~ 2 нм), и использование рабочей длины волны более близкой к длине волны нулевой дисперсии.

Технические характеристики взяты у волокон, производимых фирмой Corning.



Что еще почитать