Передача возбуждения на вегетативный ганглий. медиаторы постсинапитического. Вегетативная нервная система Нервные ганглии расположение

1. Передача возбуждения от преганглионарных нейронов на постганглионарные. Однако в некоторых ганглиях симпатической и парасимпатической нервной системы показано наличие передачи возбуждения от рецепторов, расположенных во внутренних органах, к ЦНС.
2. Рефлекторная функция. В основе этой функции лежит передача возбуждения с афферентных нейронов на эфферентные, т.е. автономные ганглии принимают участие в реализации периферических истинных рефлексов.
3. Рецепторная функция. Благодаря этой функции ЦНС получает информацию о химических процессах, протекающих в самом ганглии.
4. Интегративно-координационная функция. Эта функция наиболее хорошо выражена в интрамуральных ганглиях парасимпатической нервной системы и в метасимпатической нервной системе.

126. В чем состоит передаточная функция вегетативных гангли ев?

Передаточная функция ганглиев.
В автономных ганглиях хорошо выражено явление мультипликации, иррадиации возбуждения, центральной окклюзии, пространственной и временной суммации.
Автономным ганглиям свойственна интеграция возбуждения, т.е. они способны отвечать возбуждением на одиночное раздражение.
Подробнее рассмотрим особенности проведения возбуждения в ганглиях.
1. В автономных ганглиях наиболее ярко выражено явление мультипликации. Это значит, что одно преганглионарное волокно оканчивается на очень большом числе нейронов. Например, в верхнем симпатическом узле – 32. Благодаря мультипликации возбуждение, поступающее от какого-либо рецептора приводит в состояние активности различные органы.
2. Преганглионарное волокно в автономном ганглии образует синапс на постганглионарном нейроне. Особенности этого синапса:
а) синаптическая задержка в этом синапсе значительно больше, чем в ЦНС и равна от 15 до 30 мс;
б) ВПСП, развивающийся на постсинаптической мембране, более продолжительный, чем в ЦНС.
В эксперименте показано, что на постсинаптической мембране постсинаптического нейрона развиваются не только быстрая деполяризация (быстрый ВПСП), которая приводит к генерации потенциала действия, но также медленный ТПСП (2 с), медленный ВПСП (30 с) и поздний медленный ВПСП. Поздний медленный ВПСП очень продолжительный (4 мин). Эти 3 ответа, очевидно, регулируют передачу возбуждения в симпатическом ганглии. Начальная деполяризация создается ацетилхолином через Н-холинорецепторы. Медленный ТПСП, вероятно, создаётся дофамином, который секретируется вставочными нейронами, расположенными в пределах автономного ганглия. Вставочные нейроны возбуждаются при помощи М-холинорецепторов. Эти вставочные нейроны являются маленькими и интенсивно флюоресцирующими клетками. Медленный ВПСП создается Ach, дествующим на М-холинорецепторы, расположенные на мембране постганглионарной клетки. Поздний медленный ВПСП создается гонадолиберином.
3. В потенциале действия, развивающимся на постганглионарных нейронах, хорошо выражена следовая гиперполяризация.
В соответствии с тремя приведенными особенностями частота генерируемых постганглионарными нейронами потенциалов действия невелика от 10-15 в 1 с, в то время как по преганглионарным волокнам поступает до 100 имп/с. Таким образом, для автономных ганглиев характерно явление трансформации ритма в сторону его снижения. Более того, подобный ритм является наиболее адекватным для регуляции, например, гладких мышц, которые медленно сокращаются.



127. В чем состоит рефлекторная функция вегетативных ганглиев ?

Эти две функции стали выделять, после того как были открыты специфические афферентные нейроны.

Долгое время, благодаря работам Лэнгли, считалось, что все афферентные волокна являются цереброспинальными, имеющим тело нейрона в спинальных ганглиях или ядрах головного мозга.



В конце прошлого столетия Догель А.С. описал в нервных сплетениях кишечника и желудка рецепторные и эффекторные клетки. Рецепторные клетки также называются клетками Догеля II типа. Это мультиполярные клетки с длинными дендритами. Эффекторными называются клетки Догеля I типа. Они имеют короткие дендриты и длинный аксон. Клетки Догеля II типа не имеют синапсов, т.е. преганглионарные нейроны на них не оканчиваются. Поэтому Догель их признавал чувствительными. Их аксоны оканчиваются на клетках Догеля I типа. Аксоны клеток Догеля I типа выходят из ганглия и оканчиваются на мышцах или железах. Догель считал, что между этими клетками возможна передача импульсов, т.е. переферический рефлекс.

Также выделены клетки Догеля III типа. Это ассоциативные нейроны (или вставочные).

В 1977 году Саковнин Н.Н. описал следующий феномен.

Он показал, что электрическое раздражение центрального конца перерезанного подчревного нерва, производимое в условиях отделения нижнего брыжеечного узла от ЦНС и сохранении интакного другого подчревного нерва приводит к сокращению мочевого пузыря.

Схема опыта Саковнина Н.Н.

Перерезка

подчревный нерв

нижний брызжеечный узел


мочевой пузырь

Он оценил этот феномен как периферический рефлекс, замыкающийся в этом ганглии.

Однако, Лэнгли, подтвердивший факты Саковнина Н.Н., объяснил их как ложный рефлекс, псевдорефлекс или аксон-рефлекс. Аксон рефлекс впервые был описан на электрическом органе нильского сома. Считали, что аксон рефлексы широко распространены, однако они имеют довольно ограниченное значение. Они могут возникать при распространении возбуждения по разветвлениям аксона. Например, при механическом раздражении кожи происходит ее покраснение. Это обусловлено тем, что одна веточка аксона оканчивается в коже (чувствительная), а другая иннервирует сосуд (сосудодвигательная).

Дальнейшие исследования доказали, что в ганглиях могут замыкаться истинные рефлексы. Этому были получены следующие доказательства. Если перерезать аксоны, то те их части, которые потеряли связь с телом нейрона дегенерируют. Оказалось, что после перерезки подчревного нерва не все волокна, расположенные ниже перерезки, идущие к мочевому пузырю пере­рождаются. Это доказывает, что тела этих нейронов лежат в стенке мочевого пузыря. Дальнейшими исследованиями Булыгина (академик БАН) было установлено, что эти волокна принадлежат афферентным нейронам, расположенным в автономном узле. Следовательно, нейроны, которые посылают свои отростки в ганглии и затем в ЦНС можно разделить на 2 вида:

1. Нейроны, тела которых располагаются интрамурально, т.е. в стенке органа (очевидно это клетки Догеля II типа), а длинные аксоны их идут в ганглии и ЦНС. Проходя через автономные ганглии они образуют синапсы.

2. Это нейроны, тела которых располагаются в превертебральном ганглии (в солнечном и брызжеечном). Эти нейроны имеют короткие аксоны и дендриты у них длинные направляются на периферию к органам.

Афферентные автономные нервные волокна можно отнести к волокнам гр.С со скоростью проведения возбуждения 0,3-0,8 м/с.

128. Что такое рецепторная функция вегетативных ганглиев ?

129. В чем сущность интегративно-координационной функции вегетативных ганглиев ?

Благодаря местным рефлексам отделенные от ЦНС органы способны достаточно эффективно выполнять свои функции. В стенке органов расположены возбуждающие, тормозные нейроны, нейроны, обладающие фоновой активностью, а также молчащие нейроны (среди них можно выделить рецепторные нейроны, которые реагируют на механические раздражения, температурные и др.), также эфферентные нейроны и вставочные нейроны. Благодаря этому А.Д.Ноздрачев смог обозначить эту часть автономной нервной системы, как самостоятельную - метасимпатическую нервную систему.

130. Какие виды вегетативных рефлексов вы знаете ?

Автономные рефлексы делят на

Истинные Ложные

(Аксон-рефлекс)

Центральные Периферические

(рефлекторная дуга этих рефлексов замыкается в интрамуральных ганглиях, т.е. существует в пределах метасимпатической н.с.)

  • 4. Парасимпатический отдел внс, его центры, ганглии, медиаторы, внутриклеточные посредники, характер влияния на органы и ткани; регуляция активности синапсов.
  • 1. Рефлекторный принцип деятельности цнс. Схема дуги соматического спинального рефлекса.
  • 2. Открытие и.М.Сеченовым торможения в цнс. Виды и механизмы центрального торможения.
  • 3. Роль спинного мозга в регуляции тонуса мышц и движений.
  • 4. Симпатический отдел внс. Его центры, ганглии, медиаторы, внутриклеточные посредники, влияния на деятельность внутренних органов, регуляция активности синапсов.
  • 1. Взаимоотношения между рефлексами в цнс. Принцип общего конечного пути.
  • 2. Пресинаптическое торможение в цнс, его механизмы, значение.
  • 3. Роль продолговатого и среднего мозга в регуляции тонуса мышц. Тонические рефлексы мозгового ствола.
  • 4. Надсегментарные центры регуляции вегетативных функций. Гипоталамус как высший подкорковый центр регуляции вегетативной нервной системы.
  • 1. Понятие о нервном центре. Основные свойства нервных центров.
  • 2. Постсинаптическое торможение в цнс, его виды, механизмы, значение.
  • 3. Роль мозжечка в регуляции тонуса мышц и движений.
  • 4. Общий план строения вегетативной нервной системы, её отличия от соматической.
  • 1. Виды центральных нейронов, их основные функции.
  • 2. Явление суммации в нервных центрах. Виды и механизмы суммации.
  • 3. Понятие о контрактильном тонусе. Децеребрационная ригидность, рефлекторный механизм её развития.
  • 4. Синапсы вегетативной нервной системы, их виды, локализация, механизм возбуждения, основные механизмы регуляции деятельности синапсов.
  • 1. Понятие о сегментарных и надсегментарных отделах цнс. Спинальный шок, причины и механизмы его развития.
  • 2. Реципрокная иннервация мышц-антагонистов, её механизмы, значение.
  • 3. Понятие о тонусе мышц. Виды тонуса. Основные принципы его поддержания. Этапы становления тонуса в онтогенезе.
  • 4. Синапсы вегетативной нервной системы, их виды, локализация, механизм возбуждения, основные механизмы регуляции деятельности синапсов.
  • 1. Эфферентная функция центрального нейрона. Место формирования распространяющегося возбуждения, виды импульсной активности нейронов.
  • 2. Принцип доминанты в деятельности цнс. Свойства доминантного очага. Значение доминанты для интегративной деятельности организма.
  • 3. Понятие о пирамидной и экстрапирамидной системах регуляции тонуса мышц и движений.
  • 4. Вегетативные ганглии, их свойства. Понятие о метасимпатической нервной системе и ее медиаторах.
  • 1. Рефлекс как основной принцип деятельности цнс. Основные этапы учения о рефлексе. Обратная афферентация, её значение для организма.
  • 2. Первичное и вторичное торможение в цнс. Понятие о тормозных нейронах и синапсах.
  • 3. Роль базальных ганглиев мозга в регуляции тонуса мышц и движений.
  • 4. Схема дуги спинального вегетативного рефлекса; медиаторы
  • 1. Интегративная деятельность центрального нейрона, её механизмы.
  • 2. Основные принципы и механизмы координационной деятельности цнс.
  • 3. Проприорецепторы, их роль в регуляции тонуса мышц, регуляция активности проприорецепторов.
  • 4. Периферические вегетативные рефлексы, их дуги, значение для регуляции вегетативных функций.
  • 4. Вегетативные ганглии, их свойства. Понятие о метасимпатической нервной системе и ее медиаторах.

    Особенностью периферического звена вегетативной нервной системы является наличие ганглиев, представляющих собой скопление нейронов.

    Вегетативные ганглии играют важную роль в распределении и распространении нервных влияний на органы. Отмечено, что число нервных клеток в ганглиях в несколько раз превышает число преганглионарных волокон.

    В ганглиях наблюдается явление конвергенции. Вместе с этим обнаруживается явление пространственной и временной суммации. У вегетативных ганглиев проявляются те же свойства, что и у соматических нервных центров. Поэтому ганглии вегетативной нервной системы иногда называют нервными центрами, вынесенными на периферию.

    Метасимпатическая (интраорганная) нервная система (МНС) представляет собой комплекс нервных образований – нейронов, тела которых формируют ганглии, и выходящих за пределы ганглия отростков нервных клеток. Эти структуры локализуются в стенке сердца, кишечника и других органов. Число нейронов этой системы превышает таковое в спинном мозгу. МНС не имеет центрального отдела, т. е. относительно автономна; ее функциональный модуль включает водитель ритма, сенсорные клетки, вставочные, тонические и эффекторные нейроны. Эти нервные образования обеспечивают автономию органов и местную регуляцию функций гладких и сердечной мышц, секреторного эпителия, аппарата всасывания и мелких кровеносных сосудов. Роль метасимпатической нервной системы особенно велика в регуляции функций кишечника (выше прямой кишки), где центральные нервные влияния практически отсутст вуют. В синапсах МНС обнаружено около 20 медиаторов и модуляторов, среди них ацетилхолин, холецистокинин, энкефалины, гистамин, серотонин, соматостатин, АТФ, вещество Р, катехоламины. Симпатические и парасимпатические нервы могут образовывать синапсы на метасимпатических нейронах и влиять на их активность.

    Билет №8

    1. Рефлекс как основной принцип деятельности цнс. Основные этапы учения о рефлексе. Обратная афферентация, её значение для организма.

    Рефлекс (Р.) – это закономерная реакция организма на изменения внешней или внутренней среды, протекающая при участии нервной системы в ответ на раздражение рецепторов. Рефлекторная дуга – нервный путь рефлекса – состоит из чувствительного нервного окончания (или рецепторной клетки), чувствительного нервного волокна с ганглием, центральной части (чувствительных, вставочных, эффекторных нейронов разных уровней ЦНС), эфферентного нервного волокна и эффектора.Основоположником учения о рефлексе как реализуемой нервными центрами спинного мозга ответной реакции на раздражение явился французский философ, математик и физиолог Рене Декарт (1648). Он сформулировал два важных положения рефлекторной теории: 1) деятельность организма при внешнем воздействии является отраженной (впоследствии ее стали называть рефлекторной: лат. reflexus – отраженный); 2) ответная реакция на раздражение осуществляется при помощи нервной системы.Термин «рефлекс» впервые применил чешский физиолог, анатом и офтальмолог И. Прохазка, а выражение «рефлекторная дуга» – английский невропатолог и физиолог М. Холл. Новым шагом в развитии учения о рефлексе стала книга И. М. Сеченова «Рефлексы головного мозга» (1863),главной идеей которой явилось утверждение: «Все акты сознательной и бессознательной жизни суть рефлексы». Иными словами, И. М. Сеченов использовал рефлекторный принцип для объяснения механизмов деятельности головного мозга, в том числе процессов мышления. Отсутствие в ряде случаев видимой ответной реакции на действие стимулов ученый объяснил развитием центрального торможения, открытого им годом раньше(1862). Таким образом, рефлексы могут иметь «усеченный конец».И. П. Павлов, не будучи прямым учеником И. М. Сеченова, считал,однако, его своим учителем и высоко оценивал значение книги И. М. Сеченова, назвав ее «гениальным взмахом русской мысли».

    И. П. Павлов более 30 лет своей жизни посвятил изучению высших рефлексов головного мозга, используя для этой цели метод условных рефлексов и, следовательно, объективный подход к изучению функций мозга. Он развил рефлекторную теорию, основанную на трех принципах: 1) детерминизма, т. е. причинной обусловленности различных процессов мозговой деятельности; 2) анализа и синтеза раздражений в высших отделах мозга; 3) приурочения динамики к структуре, т. е. связи функций мозга с определенными его структурами.Современный этап развития учения о рефлексе может быть назван системно-кибернетическим и связан с именами советских физиологовН. А. Бернштейна и П. К. Анохина. Идеи обратной связи были использованы для объяснения механизмов рефлекторной деятельности Н. А. Бернштейном(1947), в результате появился термин «рефлекторное кольцо».

    П. К. Анохин(1949) назвал обратные связи рефлексов «обратной афферентацией» . Источником ее являются рецепторы, локализованные в органе-эффекторе (1) и в органах чувств, принимающих участие в оценке результата рефлекторного акта (2).Так, при исполнении какой-либо мелодии на музыкальном инструменте такими рецепторами могут быть проприорецепторы мышц и сухожилий руки (1), а также рецепторы органа слуха (2). Сигналы обратной афферентации используются для сравнения результата рефлекторного акта с его программой.

    В естественных условиях жизнедеятельности рефлексы обычно объ-

    единены в системы. Причем системообразующим фактором является общий результат, к которому приводит осуществление этой совокупностирефлексов. Так, поддержание оптимальной концентрации кислорода в плазме крови обеспечивается сердечным, дыхательным, двигательным и другими рефлексами, формирующими функциональную рефлекторную систему. Учение о функциональных системах регуляции функций было развито П. К. Анохиным (1949).

    Подробности

    Ганглии представляют собой скопления мультиполярных (один аксон и несколько дендритов) нейронов (от нескольких клеток до десятков тысяч). Экстраорганные (симпатические) ганглии имеют хорошо выраженную соединительнотканную капсулу, как продолжение периневрия. Парасимпатические ганглии находятся, как правило, в интрамуральных нервных сплетениях. Ганглии интрамуральных сплетений, как и другие вегетативные узлы, содержат вегетативные нейроны местных рефлекторных дуг. Мультиполярные нейроны диаметром 20-35 мкм расположены диффузно, каждый нейрон окружен глиоцитами ганглия.

    Кроме того, описаны нейроэндокринные, хеморецепторные, биполярные, а у некоторых позвоночных и униполярные нейроны . В симпатических ганглиях имеются мелкие интенсивно флюоресцирующие клетки (МИФ-клетки) с короткими отростками и большим количеством гранулярных пузырьков в цитоплазме. Они выделяют катехоламины и оказывают тормозящее влияние на передачу импульсов с преганглионарных нервных волокон на эфферентный симпатический нейрон. Эти клетки называют интернейронами.

    Среди крупных мультиполярных нейронов вегетативных ганглиев различают: двигательные (клетки Догеля 1-го типа), чувствительные (клетки Догеля П-го типа) и ассоциативные (клетки Догеля Ш-го типа) . Двигательные нейроны имеют короткие дендриты с пластинчатыми расширениями ("рецептивные площадки"). Аксон этих клеток очень длинный, уходит за пределы ганглия в составе постганглионарных тонких безмиелиновых нервных волокон и оканчивается на гладких миоцитах внутренних органов. Клетки 1-го типа называют длинноаксонными нейронами. Нейроны П-го типа - равноотростчатые нервные клетки. От их тела отходят 2-4 отростка, среди которых различить аксон трудно. Не разветвляясь, отростки уходят далеко от тела нейрона. Их дендриты имеют чувствительные нервные окончания, а аксон оканчивается на телах двигательных нейронов в соседних ганглиях. Клетки П-го типа являются чувствительными нейронами местных вегетативных рефлекторных дуг. Клетки Догеля Ш-го типа по форме тела похожи на вегетативные нейроны П-го типа, но их дендриты не выходят за пределы ганглия, а нейрит направляется в другие ганглии. Многие исследователи считают эти клетки разновидностями чувствительных нейронов.

    Таким образом, в периферических вегетативных ганглиях имеются местные рефлекторные дуги, состоящие из чувствительных, двигательных и, возможно, ассоциативных вегетативных нейронов.
    Интрамуральные вегетативные ганглии в стенке пищеварительного тракта отличаются тем, что в их составе, кроме двигательных холинергических нейронов, имеются тормозные нейроны. Они представлены адренергическими и пуринергическими нервными клетками. В последних медиатором является пуриновый нуклеотид. В интрамуральных вегетативных ганглиях встречаются также пептидергические нейроны, выделяющие вазоинтестинальный пептид, соматостатин и ряд других пептидов, с помощью которых осуществляются нейроэндокринная регуляция и модуляция деятельности тканей и органов пищеварительной системы.

    Ацетилхолин - никотиновые (блок кураре, гексаметоний), мускариновые (блок атропин) рецепторы. Активация рецепторов→генерирование ВПСП. Быстрый ВПСП (N-холиноцер)→открытие ионных каналов. Медленный ВПСП (М-холинорец)→подавление М-тока, обусловленного повышением К-проводимости.
    Нейропептиды – действуют как нейромодуляторы.

    Энкефалины , вещество Р, люлиберин, нейротензин, соматостатин – симп. ганглии (+Ach)
    Катехоламины (NA, дофамин) – нейромедиаторы мелких клеток с интенсивной флуоресценцией.
    Нейропептид Y, соматостатин – симп. постганглионары.

    Симпатические постганглионары: NA, АТФ, нейропептид У.
    α1→инозотолтрифосфат, диацилглицерол. α2→активация G-белка, ↓цАМФ.
    β→G-белок→AC→цАМФ

    Исключения : медиатор Ach, рецепторы мускариновые.
    Парасимп. постганглионары: Ach, ВИП, NO, соматостатин, АТФ, опиоидные пептиды.
    М1 (высокое сродство к пирензепину)-повышение секреции кислоты клетками желез желудка, М2 (низкое)- замедляют серд. ритм, секреция слезных и слюнные желез.
    Разнообразное действие:
    -Специфические втор. посредники: М2 может акт-ть IP3, а может инг-ть AC, уменьшая цАМФ.
    -Действие на К и Са-каналы
    -На эндотелии образуется NO→гуанилатциклаза→цГМФ→ цГМФ-зависимая протеинкиназа→расслабление глажких мышц.

    Автономные (вегетативные) нервные узлы (ганглии) могут располагаться вдоль позвоночника (паравертебральные ганглии) или впереди него (превертебральные ганглии), а также в стенке органов: сердца, бронхов, пищеварительного тракта, мочевого пузыря и других (интрамуральные ганглии) или вблизи их поверхности. Иногда они имеют вид мелких (от нескольких клеток до нескольких десятков клеток) скоплений нейронов, расположенных по ходу некоторых нервов или лежащих интрамурально (микроганглии). К вегетативным узлам подходят преганглионарные волокна (миелиновые), содержащие отростки клеток, тела которых лежат в центральной нервной системе. Эти волокна сильно ветвятся и образуют многочисленные синаптические окончания на клетках вегетативных узлов. Благодаря этому осуществляется конвергенция большого числа терминалей преганглионарных волокон на каждый нейрон ганглия. В связи с наличием синаптической передачи вегетативные узлы относят к нервным центрам ядерного типа.

    Вегетативные нервные узлы по функциональному признаку и локализации разделяются на:

      симпатические;

      парасимпатические.

    Симпатические нервные узлы (пара- и превертебральные) получают преганглионарные волокна от клеток, расположенных в вегетативных ядрах грудных и поясничных сегментов спинного мозга. Нейромедиатором преганглионарных волокон является ацетилхолин, а постганглионарных — норадреналин (за исключением потовых желез и некоторых кровеносных сосудов, имеющих холинергическую симпатическую иннервацию). Помимо этих нейромедиаторов, в узлах выявляются энкефалины, вещество Р, соматостатин, холецистокинин.

    Парасимпатические нервные узлы (интрамуральные, лежащие вблизи органов или узлы головы) получают преганглионарные волокна от клеток, расположенных в вегетативных ядрах продолговатого и среднего мозга, а также крестцового отдела спинного мозга. Эти волокна покидают центральную нервную систему в составе 3, 7, 9, 10 пар черепномозговых нервов и передних корешков крестцовых сегментов спинного мозга. Нейромедиатором пре- и постганглионарных волокон является ацетилхолин. Кроме него роль медиаторов в этих ганглиях играют серотонин, АТФ, возможно, некоторые пептиды.

    Большинство внутренних органов имеет двойную вегетативную иннервацию, то есть получают постганглионарные волокна от клеток, расположенных как в симпатических, так и в парасимпатических узлах. Реакции, опосредуемые клетками симпатических и парасимпатических узлов, часто имеют противоположную направленность, например: симпатическая стимуляция усиливает, а парасимпатическая — тормозит сердечную деятельность.

    Общий план строения симпатических и парасимпатических нервных узлов сходен. Вегетативный узел покрыт соединительнотканной капсулой и содержит диффузно или группами расположенные тела мультиполярных нейронов, их отростки в виде безмиелиновых или, реже, миелиновых волокон и эндоневрий. Тела нейронов имеют неправильную форму, содержат эксцентрично расположенное ядро, окружены (обычно не полностью) оболочками из глиальных клеток-сателлитов (мантийных глиоцитов). Часто встречаются многоядерные и полиплоидные нейроны.

    Интрамуральные узлы и связанные с ними проводящие пути в виду их высокой автономии, сложности организации и особенностей медиаторного обмена некоторыми авторами выделяются в самостоятельный метасимпатический отдел вегетативной нервной системы. В частности, общее число нейронов в интрамуральных узлах кишки выше, чем в спинном мозге, а по сложности их взаимодействия в регуляции перистальтики и секреции их сравнивают с миникомпьютером.

    В интрамуральных узлах описаны нейроны трех типов:

      длинноаксонные эфферентные нейроны (клетки Догеля I типа) численно преобладают. Это крупные или средних размеров эфферентные нейроны с короткими дендритами и длинным аксоном, направляющимся за пределы к рабочему органу, на клетках которого он образует двигательные или секреторные окончания;

      равноотростчатые афферентные нейроны (клетки Догеля II типа) содержат длинные дендриты и аксон, уходящий за пределы данного ганглия в соседние и образующий синапсы на клетках I и III типов. Эти клетки, по-видимому, входят в качестве рецепторного звена в состав местных рефлекторных дуг, которые замыкаются без захода нервного импульса в центральную нервную систему. Наличие таких дуг подтверждается сохранением функционально активных афферентных, ассоциативных и эфферентных нейронов в трансплантированных органах (например, сердце);

      ассоциативные клетки (клетки Догеля III типа) — местные вставочные нейроны, соединяющие своими отростками несколько клеток I и II типа, морфологически сходные с клетками Догеля II типа. Дендриты этих клеток не выходят за пределы узла, а аксоны направляются в другие узлы, образуя синапсы на клетках I типа.

    Вегетативные ганглии могут быть разделены, в зависимости от их локализации, на три группы:

    • позвоночные (вертебральные),
    • предпозвоночные (превертебральные),
    • внутри-органные.

    Вертебральные ганглии относятся к симпатической нервной системе. Они расположены по обе стороны позвоночника, образуя два пограничных ствола (их называют также симпатическими цепочками). Вертебральные ганглии связаны со спинным мозгом волокнами, которые образуют белые и серые соединительные ветви. По белым соединительным ветвям-rami comroimicantes albi - к узлам идут преганглионарные волокна симпатической нервной системы.

    Волокна пост-ганглионарных симпатических нейронов направляются от узлов к периферическим органам либо по самостоятельным нервным путям, либо в составе соматических нервов. В последнем случае они идут от узлов пограничных стволов к соматическим нервам в виде тонких серых соединительных веточек - rami commiinicantes grisei (серый их цвет зависит от того, что постганглионарные симпатические волокна не имеют мякотных оболочек). Ход этих волокон можно видеть на рис. 258 .

    В ганглиях пограничного ствола прерывается большинство симпатических преганглионарных нервных волокон; меньшая их часть проходит через пограничный ствол без перерыва и прерывается в прекертебральных ганглиях.

    Превертебральные ганглии располагаются на большем, чем ганглии пограничного ствола, расстоянии от позвоночника, вместе с тем они находятся в некотором отдалении и от иннервируемых ими органов. К числу превертебральныхх ганглиев относят ресничный узел, верхний и средний шейные симпатические узлы, солнечное сплетение, верхний и нижний 6pыжеечные узлы. В них всех, за исключением ресничного узла, прерываются симпатические преганглионарные волокна, прошедшие без перерыва узлы пограничного ствола. В ресничном узле прерываются парасимпатические преганглионарные волокна, иннервирующие мышцы глаза.

    К внутриорганным ганглиям относятся богатые нервными клетками сплетения, расположенные во внутренних органах. Такие сплетения (интрамуральные сплетения) имеются в мышечных стенках многих внутренних органов, например сердца, бронхов, средней и нижней трети пищевода, желудка, кишечника, желчного пузыря, мочевого пузыря, а также в железах внешней и внутренней секреции. На клетках этих нервных сплетений, как показали гистологические исследования Б. И. Лаврентьева и др., прерываются парасимпатические волокна.

    . Вегетативные ганглии играют значительную роль в распределении и распространении проходящих через них нервных импульсов. Число нервных клеток в ганглиях в несколько раз (в верхнем шейном спмпатическом узле в 32 раза, в ресничном узле в 2 раза) больше числа приходящих к ганглию преганглионарных волокон. Каждое из этих волокон образует синапсы на многих клетках ганглия.



    Что еще почитать