Пределы 1 курс. Определение предела функции на бесконечности

Основных элементарных функций разобрались.

При переходе к функциям более сложного вида мы обязательно столкнемся с появлением выражений, значение которых не определено. Такие выражения называют неопределенностями .

Перечислим все основные виды неопределенностей : ноль делить на ноль (0 на 0 ), бесконечность делить на бесконечность , ноль умножить на бесконечность , бесконечность минус бесконечность , единица в степени бесконечность , ноль в степени ноль , бесконечность в степени ноль .

ВСЕ ДРУГИЕ ВЫРАЖЕНИЯ НЕОПРЕДЕЛЕННОСТЯМИ НЕ ЯВЛЯЮТСЯ И ПРИНИМАЮТ ВПОЛНЕ КОНКРЕТНОЕ КОНЕЧНОЕ ИЛИ БЕСКОНЕЧНОЕ ЗНАЧЕНИЕ.


Раскрывать неопределенности позволяет:

  • упрощение вида функции (преобразование выражения с использованием формул сокращенного умножения, тригонометрических формул, домножением на сопряженные выражения с последующим сокращением и т.п.);
  • использование замечательных пределов;
  • применение правила Лопиталя ;
  • использование замены бесконечно малого выражения ему эквивалентным (использование таблицы эквивалентных бесконечно малых).

Сгруппируем неопределенности в таблицу неопределенностей . Каждому виду неопределенности поставим в соответствие метод ее раскрытия (метод нахождения предела).

Эта таблица вместе с таблицей пределов основных элементарных функций будут Вашими главными инструментами при нахождении любых пределов.

Приведем парочку примеров, когда все сразу получается после подстановки значения и неопределенности не возникают.

Пример.

Вычислить предел

Решение.

Подставляем значение:

И сразу получили ответ.

Ответ:


Пример.

Вычислить предел

Решение.

Подставляем значение х=0 в основание нашей показательно степенной функции:

То есть, предел можно переписать в виде

Теперь займемся показателем. Это есть степенная функция . Обратимся к таблице пределов для степенных функций с отрицательным показателем. Оттуда имеем и , следовательно, можно записать .

Исходя из этого, наш предел запишется в виде:

Вновь обращаемся к таблице пределов, но уже для показательных функций с основанием большим единицы, откуда имеем:

Ответ:

Разберем на примерах с подробными решениями раскрытие неопределенностей преобразованием выражений .

Очень часто выражение под знаком предела нужно немного преобразовать, чтобы избавиться от неопределенностей.

Пример.

Вычислить предел

Решение.

Подставляем значение:

Пришли к неопределенности. Смотрим в таблицу неопределенностей для выбора метода решения. Пробуем упростить выражение.

Ответ:

Пример.

Вычислить предел

Решение.

Подставляем значение:

Пришли к неопределенности (0 на 0 ). Смотрим в таблицу неопределенностей для выбора метода решения и пробуем упростить выражение. Домножим и числитель и знаменатель на выражение, сопряженное знаменателю.

Для знаменателя сопряженным выражением будет

Знаменатель мы домножали для того, чтобы можно было применить формулу сокращенного умножения – разность квадратов и затем сократить полученное выражение.

После ряда преобразований неопределенность исчезла.

Ответ:

ЗАМЕЧАНИЕ: для пределов подобного вида способ домножения на сопряженные выражения является типичным, так что смело пользуйтесь.

Пример.

Вычислить предел

Решение.

Подставляем значение:

Пришли к неопределенности. Смотрим в таблицу неопределенностей для выбора метода решения и пробуем упростить выражение. Так как и числитель и знаменатель обращаются в ноль при х=1 , то если эти выражения, можно будет сократить (х-1) и неопределенность исчезнет.

Разложим числитель на множители:

Разложим знаменатель на множители:

Наш предел примет вид:

После преобразования неопределенность раскрылась.

Ответ:

Рассмотрим пределы на бесконечности от степенных выражений. Если показатели степенного выражения положительны, то предел на бесконечности бесконечен. Причем основное значение имеет наибольшая степень, остальные можно отбрасывать.

Пример.

Пример.

Если выражение под знаком предела представляет собой дробь, причем и числитель и знаменатель есть степенные выражения (m – степень числителя, а n – степень знаменателя), то при возникает неопределенность вида бесконечность на бесконечность , в этом случае неопределенность раскрывается делением и числитель и знаменатель на

Пример.

Вычислить предел

Элементарные функции и их графики.

Основными элементарными функциями считаются: степенная функция, показательная функция, логарифмическая функция, тригонометрические функции и обратные тригонометрические функции, а также многочлен и рациональная функция, которая представляет собой отношение двух многочленов.

К элементарным функциям относятся и те функции, которые получаются из элементарных путем применения основных четырех арифметических действий и образования сложной функции.

Графики элементарных функций

Прямая линия - график линейной функции y = ax + b . Функция y монотонно возрастает при a > 0 и убывает при a < 0. При b = 0 прямая линия проходит через начало координат т. 0 (y = ax - прямая пропорциональность)
Парабола - график функции квадратного трёхчлена у = ах 2 + bх + с . Имеет вертикальную ось симметрии. Если а > 0, имеет минимум, если а < 0 - максимум. Точки пересечения (если они есть) с осью абсцисс - корни соответствующего квадратного уравнения ax 2 + bx +с =0
Гипербола - график функции . При а > О расположена в I и III четвертях, при а < 0 - во II и IV. Асимптоты - оси координат. Ось симметрии - прямая у = х(а > 0) или у - - х(а < 0).
Показательная функция. Экспонента (показательная функция по основанию е) у = е x . (Другое написание у = ехр(х) ). Асимптота - ось абсцисс.
Логарифмическая функция y = log a x (a > 0)
у = sinx. Синусоида - периодическая функция с периодом Т = 2π

Предел функции.

Функция y=f(x) имеет число А пределом при стремлении х к а, если для любого числа ε › 0 найдется такое число δ › 0, что | y – A | ‹ ε если |х - а| ‹ δ,

или lim у = A

Непрерывность функции.

Функция y=f(x) непрерывна в точке х = а, если lim f(x) = f(а), т.е.

предел функции в точке х = а равен значению функции в данной точке.

Нахождение пределов функций.

Основные теоремы о пределах функций.

1. Предел постоянной величины равен этой постоянной величине:

2. Предел алгебраической суммы равен алгебраической сумме пределов этих функций:

lim (f + g - h) = lim f + lim g - lim h

3. Предел произведения нескольких функций равен произведению пределов этих функций:

lim (f * g* h) = lim f * lim g * lim h

4. Предел частного двух функций равен частному пределов этих функций, если предел знаменателя не равен 0:

lim ------- = ----------

Первый замечательный предел: lim --------- = 1

Второй замечательный предел: lim (1 + 1/x) x = e (e = 2, 718281..)

Примеры нахождения пределов функций.

5.1. Пример:

Любой предел состоит из трех частей:

1) Всем известного значка предела .

2) Записи под значком предела . Запись читается «икс стремится к единице». Чаще всего – именно х, хотя вместо «икса» может быть любая другая переменная. На месте единицы может находиться совершенно любое число, а также бесконечность 0 или .

3) Функции под знаком предела, в данном случае .

Сама запись читается так: «предел функции при икс стремящемся к единице».

Очень важный вопрос – а что значит выражение «икс стремится к единице»? Выражение «икс стремится к единице» следует понимать так – «икс» последовательно принимает значения, которые бесконечно близко приближаются к единице и практически с ней совпадают.

Как решить вышерассмотренный пример? Исходя из вышесказанного, нужно просто подставить единицу в функцию, стоящую под знаком предела:

Итак, первое правило: Когда дан предел, надо сначала просто подставить число в функцию.

5.2. Пример с бесконечностью:

Разбираемся, что такое ? Это тот случай, когда неограниченно возрастает.

Итак: если , то функция стремится к минус бесконечности:

Согласно нашему первому правилу, мы вместо «икса» подставляем в функцию бесконечность и получаем ответ.

5.3. Еще один пример с бесконечностью:

Опять начинаем увеличивать до бесконечности, и смотрим на поведение функции.
Вывод: прифункциянеограниченно возрастает

5.4. Серия примеров:

Попытайтесь самостоятельно мысленно проанализировать нижеследующие примеры и решить простейшие виды пределов:

, , , , , , , , ,

Что нужно запомнить и понять из вышесказанного?

Когда дан любой предел, сначала просто подставить число в функцию. При этом Вы должны понимать и сразу решать простейшие пределы, такие как, , и т.д.

6. Пределы с неопределенностью видаи метод их решения.

Сейчас мы рассмотрим группу пределов, когда , а функция представляет собой дробь, в числителе и знаменателе которой находятся многочлены.

6.1. Пример:

Вычислить предел

Согласно нашему правилу попы таемся подставить бесконечность в функцию. Что у нас получается вверху? Бесконечность. А что получается внизу? Тоже бесконечность. Таким образом, у нас есть так называемая неопределенность вида . Можно было бы подумать, что = 1, и ответ готов, но в общем случае это вовсе не так, и нужно применить некоторый прием решения, который мы сейчас и рассмотрим.

Как решать пределы данного типа?

Сначала мы смотрим на числитель и находим в старшей степени:

Старшая степень в числителе равна двум.

Теперь смотрим на знаменатель и тоже находим в старшей степени:

Старшая степень знаменателя равна двум.

Затем мы выбираем самую старшую степень числителя и знаменателя: в данном примере они совпадают и равны двойке.

Итак, метод решения следующий: для того, чтобы раскрыть неопределенностьнеобходимо разделить числитель и знаменатель на в старшей степени.



Таким образом, ответ , а вовсе не 1.

Пример

Найти предел

Снова в числителе и знаменателе находим в старшей степени:

Максимальная степень в числителе: 3

Максимальная степень в знаменателе: 4

Выбираем наибольшее значение, в данном случае четверку.
Согласно нашему алгоритму, для раскрытия неопределенности делим числитель и знаменатель на .

Пример

Найти предел

Максимальная степень «икса» в числителе: 2

Максимальная степень «икса» в знаменателе: 1 ( можно записать как )
Для раскрытия неопределенности необходимо разделить числитель и знаменатель на . Чистовой вариант решения может выглядеть так:

Разделим числитель и знаменатель на

Неопределённость вида и вида - самые распространённые неопределённости, которые требуется раскрывать при решении пределов.

Большая часть задач на пределы, попадающихся студентам, как раз несут в себе такие неопределённости. Для их раскрытия или, точнее, ухода от неопределённостей существует несколько искусственных приёмов преобразования вида выражения под знаком предела. Эти приёмы следующие: почленное деление числителя и знаменателя на старшую степень переменной, домножение на сопряжённое выражение и разложение на множители для последующего сокращения с использованием решений квадратных уравнений и формул сокращённого умножения.

Неопределённость вида

Пример 1.

n равна 2. Поэтому почленно делим числитель и знаменатель на :

.

Комментарий к правой части выражения. Стрелками и цифрами обозначено, к чему стремятся дроби после подстановки вместо n значения бесконечность. Здесь, как и в примере 2, степень n в знаменателя больше, чем в числителе, в результате чего вся дробь стремится к бесконечно малой величине или "супермалому числу".

Получаем ответ: предел данной функции при переменной, стремящейся к бесконечности, равен .

Пример 2. .

Решение. Здесь старшая степень переменной x равна 1. Поэтому почленно делим числитель и знаменатель на x :

.

Комментарий к ходу решения. В числителе загоняем "икс" под корень третьей степени, а чтобы его первоначальная степень (1) оставалась неизменной, присваиваем ему ту же степень, что и у корня, то есть 3. Стрелок и дополнительных чисел в этой записи уже нет, так что попробуйте мысленно, но по аналогии с предыдущим примером определить, к чему стремятся выражения в числителе и знаменателе после подстановки бесконечности вместо "икса".

Получили ответ: предел данной функции при переменной, стремящейся к бесконечности, равен нулю.

Неопределённость вида

Пример 3. Раскрыть неопределённость и найти предел .

Решение. В числителе - разность кубов. Разложим её на множители, применяя формулу сокращённого умножения из курса школьной математики:

В знаменателе - квадратный трёхчлен, который разложим на множители, решив квадратное уравнение (ещё раз ссылка на решение квадратных уравнений):

Запишем выражение, полученное в результате преобразований и найдём предел функции:

Пример 4. Раскрыть неопределённость и найти предел

Решение. Теорема о пределе частного здесь неприменима, поскольку

Поэтому тождественно преобразуем дробь: умножив числитель и знаменатель на двучлен, сопряжённый знаменателю, и сократим на x +1. Согласно следствию из теоремы 1, получим выражение, решая которое, находим искомый предел:


Пример 5. Раскрыть неопределённость и найти предел

Решение. Непосредственная подстановка значения x = 0 в заданную функцию приводит к неопределённости вида 0/0. Чтобы раскрыть её, выполним тождественные преобразования и получим в итоге искомый предел:

Пример 6. Вычислить

Решение: воспользуемся теоремами о пределах

Ответ: 11

Пример 7. Вычислить

Решение: в этом примере пределы числителя и знаменателя при равны 0:

; . Получили , следовательно, теорему о пределе частного применять нельзя.

Разложим числитель и знаменатель на множители, чтобы сократить дробь на общий множитель, стремящийся к нулю, и, следовательно, сделать возможным применение теоремы 3.

Квадратный трехчлен в числителе разложим по формуле , где x 1 и х 2 – корни трехчлена. Разложив на множители и знаменатель, сократим дробь на (x-2), затем применим теорему 3.

Ответ:

Пример 8. Вычислить

Решение: При числитель и знаменатель стремятся к бесконечности, поэтому при непосредственном применении теоремы 3 получаем выражение , которое представляет собой неопределенность. Для избавления от неопределенности такого вида следует разделить числитель и знаменатель на старшую степень аргумента. В данном примере нужно разделить на х :

Ответ:

Пример 9. Вычислить

Решение: х 3 :

Ответ: 2

Пример 10. Вычислить

Решение: При числитель и знаменатель стремятся к бесконечности. Разделим числитель и знаменатель на старшую степень аргумента, т.е. х 5 :

=

числитель дроби стремится к 1, знаменатель к 0, поэтому дробь стремится к бесконечности.

Ответ:

Пример 11. Вычислить

Решение: При числитель и знаменатель стремятся к бесконечности. Разделим числитель и знаменатель на старшую степень аргумента, т.е. х 7 :

Ответ: 0

Производная.

Производной функции y = f(x) по аргументу x называется предел отношения ее приращения y к приращению x аргумента x, когда приращение аргумента стремится к нулю: . Если этот предел конечен, то функция y = f(x) называется дифференцируемой в точке х. Если же этот предел есть , то говорят, что функция y = f(x) имеет в точке х бесконечную производную.

Производные основных элементарных функций:

1. (const)=0 9.

3. 11.

4. 12.

5. 13.

6. 14.

Правила дифференцирования:

a)

в)

Пример 1. Найти производную функции

Решение: Если производную от второго слагаемого находим по правилу дифференцирования дроби, то первое слагаемое представляет собой сложную функцию, производная которой находится по формуле:

, где , тогда

При решении были использованы формулы: 1,2,10,а,в,г.

Ответ:

Пример 21. Найти производную функции

Решение: оба слагаемых – сложные функции, где для первого , , а для второго , , тогда

Ответ:

Приложения производной.

1. Скорость и ускорение

Пусть функция s(t) описывает положение объекта в некоторой системе координат в момент времени t. Тогда первая производная функции s(t) является мгновенной скоростью объекта:
v=s′=f′(t)
Вторая производная функции s(t) представляет собой мгновенное ускорение объекта:
w=v′=s′′=f′′(t)

2. Уравнение касательной
y−y0=f′(x0)(x−x0),
где (x0,y0) − координаты точки касания, f′(x0) − значение производной функции f(x) в точке касания.

3. Уравнение нормали
y−y0=−1f′(x0)(x−x0),

где (x0,y0) − координаты точки, в которой проведена нормаль, f′(x0) − значение производной функции f(x) в данной точке.

4. Возрастание и убывание функции
Если f′(x0)>0, то функция возрастает в точке x0. На рисунке ниже функция является возрастающей при xx2.
Если f′(x0)<0, то функция убывает в точке x0 (интервал x1 Если f′(x0)=0 или производная не существует, то данный признак не позволяет определить характер монотонности функции в точке x0.

5. Локальные экстремумы функции
Функция f(x) имеет локальный максимум в точке x1, если существует такая окрестность точки x1, что для всех x из этой окрестности выполняется неравенство f(x1)≥f(x).
Аналогично, функция f(x) имеет локальный минимум в точке x2, если существует такая окрестность точки x2, что для всех x из этой окрестности выполняется неравенство f(x2)≤f(x).

6. Критические точки
Точка x0 является критической точкой функции f(x), если производная f′(x0) в ней равна нулю или не существует.

7. Первый достаточный признак существования экстремума
Если функция f(x) возрастает (f′(x)>0) для всех x в некотором интервале (a,x1] и убывает (f′(x)<0) для всех x в интервале и возрастает (f′(x)>0) для всех x из интервала }

Что еще почитать